Fault Diagnosis for Motor Rotor Based on KPCA-SVM

被引:3
|
作者
Li, Ping [1 ]
Li, Xuejun [1 ]
Jiang, Lingli [1 ]
Yang, Dalian [1 ]
机构
[1] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipmen, Xiangtan 411201, Peoples R China
关键词
KPCA; SVM; motor rotor; fault diagnosis;
D O I
10.4028/www.scientific.net/AMM.143-144.680
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aimed at the nonlinear properties of motor rotor vibration signal,a fault diagnosis method based on kernel principal component analysis (KPCA) and support vector machines (SVM) was proposed. Initial feature vectors of motor vibration signal were mapped into higher-dimensional space with kernel function. Then the PCA method was used to analyze the data in the high dimensional space to extract the nonlinear features which is used as training sample of SVM fault classifier. Then the rotor fault is identified using the trained classifier. The classification effect of KPCA-SVM is compared with PCA-SVM and SVM. The result shows that the method based on KPCA-SVM can identify motor rotor fault efficiently and fulfill fault classification accurately.
引用
收藏
页码:680 / 684
页数:5
相关论文
共 50 条
  • [31] AE signal of Early Rotor cracks fault diagnosis based on PWVD and SVM
    Li, X. J.
    Wang, K.
    He, K. F.
    Li, X. C.
    OPTICAL, ELECTRONIC MATERIALS AND APPLICATIONS, PTS 1-2, 2011, 216 : 212 - 217
  • [32] Fault Diagnosis of Rolling bearing Using the Hermitian wavelet analysis, KPCA and SVM
    Deng, Feiyue
    Yang, Shaopu
    Liu, Yongqiang
    Liao, Yingying
    Ren, Bin
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 632 - 637
  • [33] 岩溶塌陷倾向性等级的KPCA-SVM预测模型
    邵良杉
    徐波
    中国安全科学学报, 2015, 25 (03) : 60 - 65
  • [34] 基于KPCA-SVM的相关和独立变量故障检测方法
    郭金玉
    于欢
    李元
    深圳大学学报(理工版), 2023, (01) : 14 - 21
  • [35] 基于KPCA-SVM的断路器故障稳健诊断方法
    梅飞
    梅军
    郑建勇
    朱克东
    电工技术学报, 2014, 29(S1) (S1) : 50 - 58
  • [37] 基于KPCA-SVM的表面肌电信号疲劳分类研究
    刘光达
    董梦坤
    张守伟
    许蓝予
    周葛
    蔡靖
    电子测量与仪器学报, 2021, 35 (10) : 1 - 8
  • [38] 基于PSO改进KPCA-SVM的故障监测和诊断方法研究
    张志政
    王冬捷
    张勇亮
    现代制造工程, 2020, (09) : 101 - 107
  • [39] Application of MCSA and SVM to induction machine rotor fault diagnosis
    Fang, Ruiming
    Ma, Hongzhong
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5543 - +
  • [40] SVM optimization based on BFA and its application in AE rotor crack fault diagnosis
    Li X.
    Yang D.
    Wu J.
    Journal of Computers, 2011, 6 (10) : 2084 - 2091