On Round-off Error for Adaptive Finite Element Methods

被引:8
|
作者
Alvarez-Aramberri, J. [1 ]
Pardo, D. [1 ,2 ]
Paszynski, Maciej [3 ]
Collier, Nathan [4 ]
Dalcin, Lisandro [5 ]
Calo, Victor M. [4 ]
机构
[1] Univ Basque Country UPV EHU, Dept Appl Math Stat & Operat Res, Bilbao, Spain
[2] Ikerbasque, Bilbao, Spain
[3] AGH Univ Sci & Technol, Krakow, Poland
[4] King Abdullah Univ Sci & Technol KAUST, Riyadh, Saudi Arabia
[5] Consejo Nacl Invest Cient & Tecn, Santa Fe, Argentina
关键词
Finite Element Methods (FEM); hp-adaptivity; round-off error; condition number;
D O I
10.1016/j.procs.2012.04.162
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called 'radical meshes'. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
引用
收藏
页码:1474 / 1483
页数:10
相关论文
共 50 条
  • [21] Bounding the Round-Off Error of the Upwind Scheme for Advection
    Ben Salem-Knapp, Louise
    Boldo, Sylvie
    Weens, William
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1253 - 1262
  • [22] A cost-error tunable round-off method: Finite-length absorption
    Mahdiani, Hamid Reza
    Fakhraie, Sied Mehdi
    IEICE ELECTRONICS EXPRESS, 2009, 6 (18): : 1312 - 1317
  • [23] CADNA:: a library for estimating round-off error propagation
    Jezequel, Fabienne
    Chesneaux, Jean-Marie
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (12) : 933 - 955
  • [24] Finding Round-Off Error Using Symbolic Execution
    Anh-Hoang Truong
    Huy-Vu Tran
    Bao-Ngoc Nguyen
    KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2013), VOL 1, 2014, 244 : 415 - 428
  • [25] Complexity estimates depending on condition and round-off error
    Cucker, F
    Smale, S
    JOURNAL OF THE ACM, 1999, 46 (01) : 113 - 184
  • [26] A NOTE ON A REGRESSION TRANSFORMATION FOR SMALLER ROUND-OFF ERROR
    CHUN, D
    TECHNOMETRICS, 1968, 10 (02) : 393 - &
  • [27] ROUND-OFF ERROR IN LONG-TERM ORBITAL INTEGRATIONS USING MULTISTEP METHODS
    QUINLAN, GD
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (04): : 339 - 351
  • [28] The effect of round-off error on long memory processes
    La Spada, Gabriele
    Lillo, Fabrizio
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2014, 18 (04): : 445 - 482
  • [29] Round-Off Error and Exceptional Behavior Analysis of Explicit Runge-Kutta Methods
    Boldo, Sylvie
    Faissole, Florian
    Chapoutot, Alexandre
    IEEE TRANSACTIONS ON COMPUTERS, 2020, 69 (12) : 1745 - 1756
  • [30] Round-off Error Analysis of Explicit One-Step Numerical Integration Methods
    Boldo, Sylvie
    Faissole, Florian
    Chapoutot, Alexandre
    2017 IEEE 24TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2017, : 82 - 89