The bulk-surface finite element method for reaction-diffusion systems on stationary volumes

被引:32
|
作者
Madzyamuse, Anotida [1 ]
Chung, Andy H. W. [1 ]
机构
[1] Univ Sussex, Sch Math & Phys Sci, Dept Math, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Bulk-surface reaction-diffusion equations; Bulk-surface finite elements; Diffusion-driven instability; Pattern formation; PARTIAL-DIFFERENTIAL-EQUATIONS; SYMMETRY-BREAKING; INSTABILITIES; MODEL;
D O I
10.1016/j.finel.2015.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we present the bulk-surface finite element method (BSFEM) for solving coupled systems of bulk-surface reaction-diffusion equations (BSRDEs) on stationary volumes. Such systems of coupled bulk-surface partial differential equations arise naturally in biological applications and fluid dynamics, for example, in modelling of cellular dynamics in cell motility and transport and diffusion of surfactants in two phase flows. In this proposed framework, we define the surface triangulation as a collection of the faces of the elements of the bulk triangulation whose vertices lie on the surface. This implies that the surface triangulation is the trace of the bulk triangulation. As a result, we construct two finite element spaces for the interior and surface respectively. To discretise in space we use piecewise bilinear elements and the implicit second order fractional-step theta scheme is employed to discretise in time. Furthermore, we use the Newton method to treat the nonlinearities. The BSFEM applied to a coupled system of BSRDEs reveals interesting patterning behaviour. For a set of appropriate model parameter values, the surface reaction-diffusion system is not able to generate patterns everywhere in the bulk except for a small region close to the surface while the bulk reaction-diffusion system is able to induce patterning almost everywhere. Numerical experiments are presented to reveal such patterning processes associated with reaction-diffusion theory. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:9 / 21
页数:13
相关论文
共 50 条
  • [21] Finite element analysis for a coupled bulk-surface partial differential equation
    Elliott, Charles M.
    Ranner, Thomas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 377 - 402
  • [22] A cut finite element method for coupled bulk-surface problems on time-dependent domains
    Hansbo, Peter
    Larson, Mats G.
    Zahedi, Sara
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 307 : 96 - 116
  • [23] Finite volume element method for analysis of unsteady reaction-diffusion problems
    Sutthisak Phongthanapanich
    Pramote Dechaumphai
    Acta Mechanica Sinica, 2009, 25 (04) : 481 - 489
  • [24] Galerkin finite element method for the generalized delay reaction-diffusion equation
    Lubo, Gemeda Tolessa
    Duressa, Gemechis File
    RESEARCH IN MATHEMATICS, 2022, 9 (01):
  • [25] Finite volume element method for analysis of unsteady reaction-diffusion problems
    Phongthanapanich, Sutthisak
    Dechaumphai, Pramote
    ACTA MECHANICA SINICA, 2009, 25 (04) : 481 - 489
  • [26] A BALANCED FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS
    Lin, Runchang
    Stynes, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2729 - 2743
  • [27] A DUAL FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM
    Cai, Zhiqiang
    Ku, Jaeun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1654 - 1673
  • [28] Bulk-surface virtual element method for systems of PDEs in two-space dimensions
    Frittelli, Massimo
    Madzvamuse, Anotida
    Sgura, Ivonne
    NUMERISCHE MATHEMATIK, 2021, 147 (02) : 305 - 348
  • [29] Bulk-surface virtual element method for systems of PDEs in two-space dimensions
    Massimo Frittelli
    Anotida Madzvamuse
    Ivonne Sgura
    Numerische Mathematik, 2021, 147 : 305 - 348
  • [30] The Finite Point Method for Reaction-Diffusion Systems in Developmental Biology
    Tatari, Mehdi
    Kamranian, Maryam
    Dehghan, Mehdi
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 82 (01): : 1 - 28