The Relationship Between Semiclassical Laguerre Polynomials and the Fourth Painlev, Equation

被引:42
|
作者
Clarkson, Peter A. [1 ]
Jordaan, Kerstin [2 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
[2] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
Semiclassical orthogonal polynomials; Recurrence coefficients; Painleve equations; Wronskians; Parabolic cylinder functions; Hamiltonians; ORTHOGONAL POLYNOMIALS; DIFFERENTIAL-EQUATIONS; RECURRENCE COEFFICIENTS; MATRIX MODELS; TODA CHAIN; TRANSFORMATIONS; HAMILTONIANS; 2ND-ORDER; ENSEMBLES; SYSTEMS;
D O I
10.1007/s00365-013-9220-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the relationship between the recurrence coefficients of orthogonal polynomials with respect to a semiclassical Laguerre weight and classical solutions of the fourth Painlev, equation. We show that the coefficients in these recurrence relations can be expressed in terms of Wronskians of parabolic cylinder functions that arise in the description of special function solutions of the fourth Painlev, equation.
引用
收藏
页码:223 / 254
页数:32
相关论文
共 50 条
  • [41] Orthogonal polynomials associated to a certain fourth order differential equation
    Joachim Hilgert
    Toshiyuki Kobayashi
    Gen Mano
    Jan Möllers
    The Ramanujan Journal, 2011, 26 : 295 - 310
  • [42] Asymptotic approximations between the Hahn-type polynomials and Hermite, Laguerre and Charlier polynomials
    Ferreira, Chelo
    Lopez, Jose L.
    Pagola, Pedro J.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (03) : 235 - 252
  • [43] Orthogonal polynomials associated to a certain fourth order differential equation
    Hilgert, Joachim
    Kobayashi, Toshiyuki
    Mano, Gen
    Moellers, Jan
    RAMANUJAN JOURNAL, 2011, 26 (03): : 295 - 310
  • [44] Asymptotic Approximations between the Hahn-Type Polynomials and Hermite, Laguerre and Charlier Polynomials
    Chelo Ferreira
    José L. López
    Pedro J. Pagola
    Acta Applicandae Mathematicae, 2008, 103 : 235 - 252
  • [45] Generalization of Resonant Equations for the Laguerre- and Legendre-Type Polynomials to Equations of the Fourth Order
    Makarov, V. L.
    Romaniuk, N. M.
    Bandyrskii, B., I
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 71 (11) : 1751 - 1762
  • [46] New unconditionally stable scheme for telegraph equation based on weighted Laguerre polynomials
    Zhang, Di
    Miao, Xiaoping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) : 1603 - 1615
  • [47] Generalization of Resonant Equations for the Laguerre- and Legendre-Type Polynomials to Equations of the Fourth Order
    V. L. Makarov
    N. M. Romaniuk
    B. I. Bandyrskii
    Ukrainian Mathematical Journal, 2020, 71 : 1751 - 1762
  • [48] A Linear Homogeneous Partial Differential Equation with Entire Solutions Represented by Laguerre Polynomials
    Wang, Xin-Li
    Zhang, Feng-Li
    Hu, Pei-Chu
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [49] A DIRECT APPROACH TO KOEKOEKS DIFFERENTIAL-EQUATION FOR GENERALIZED LAGUERRE-POLYNOMIALS
    BAVINCK, H
    ACTA MATHEMATICA HUNGARICA, 1995, 66 (03) : 247 - 253
  • [50] Solution of time domain electric field integral equation using the Laguerre polynomials
    Chung, YS
    Sarkar, TK
    Jung, BH
    Salazar-Palma, M
    Ji, Z
    Jang, S
    Kim, K
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) : 2319 - 2328