Unsupervised spectral clustering for hierarchical modelling and criticality analysis of complex networks

被引:21
|
作者
Fang, Yi-Ping [1 ,2 ]
Zio, Enrico [1 ,2 ,3 ]
机构
[1] Ecole Cent Paris, Chair Syst Sci & Energet Challenge, F-92295 Paris, France
[2] Supelec, F-92295 Paris, France
[3] Politecn Milan, Dept Energy, I-20133 Milan, Italy
关键词
Critical infrastructures; Complex networks; Criticality analysis; Centrality measures; Spectral clustering; Hierarchical modelling; CENTRALITY; ALGORITHM; KERNEL;
D O I
10.1016/j.ress.2013.02.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Infrastructure networks are essential to the socioeconomic development of any country. This article applies clustering analysis to extract the inherent structural properties of realistic-size infrastructure networks. Network components with high criticality are identified and a general hierarchical modelling framework is developed for representing the networked system into a scalable hierarchical structure of corresponding fictitious networks. This representation makes a multi-scale criticality analysis possible, beyond the widely used component-level criticality analysis, whose results obtained from zoom-in analysis can support confident decision making. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 50 条
  • [31] A hierarchical unsupervised spectral clustering scheme for detection of prostate cancer from Magnetic Resonance Spectroscopy (MRS)
    Tiwari, Pallavi
    Madabhushi, Anant
    Rosen, Mark
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 278 - +
  • [32] Quantum spectral clustering algorithm for unsupervised learning
    Qingyu Li
    Yuhan Huang
    Shan Jin
    Xiaokai Hou
    Xiaoting Wang
    Science China Information Sciences, 2022, 65
  • [33] Quantum spectral clustering algorithm for unsupervised learning
    Qingyu LI
    Yuhan HUANG
    Shan JIN
    Xiaokai HOU
    Xiaoting WANG
    Science China(Information Sciences), 2022, 65 (10) : 43 - 52
  • [34] Approximate spectral clustering for unsupervised agriculture monitoring
    Tasdemir, Kadim
    2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,
  • [35] Quantum spectral clustering algorithm for unsupervised learning
    Li, Qingyu
    Huang, Yuhan
    Jin, Shan
    Hou, Xiaokai
    Wang, Xiaoting
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (10)
  • [36] Iterative spectral clustering for unsupervised object localization
    Vora, Aditya
    Raman, Shanmuganathan
    PATTERN RECOGNITION LETTERS, 2018, 106 : 27 - 32
  • [37] UNSUPERVISED IMAGE CATEGORIZATION WITH IMPROVED SPECTRAL CLUSTERING
    Yang, Jie
    Miao, Zhenjiang
    Wu, Hao
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1381 - 1386
  • [38] Hierarchical Spectral Clustering of Power Grids
    Sanchez-Garcia, Ruben J.
    Fennelly, Max
    Norris, Sean
    Wright, Nick
    Niblo, Graham
    Brodzki, Jacek
    Bialek, Janusz W.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (05) : 2229 - 2237
  • [39] SHC: a spectral algorithm for hierarchical clustering
    Li Xiaohong
    Huang Jingwei
    MINES 2009: FIRST INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY, VOL 2, PROCEEDINGS, 2009, : 197 - 200
  • [40] A Hierarchical Bayesian Approach for Unsupervised Cell Phenotype Clustering
    Krishna, Mahesh Venkata
    Denzler, Joachim
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 69 - 80