IMPROVED RELAXED POSITIVE-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS

被引:12
|
作者
Cao, Yang [1 ]
Ren, Zhiru [2 ]
Yao, Linquan [3 ]
机构
[1] Nantong Univ, Sch Transportat, Nantong 226019, Peoples R China
[2] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
[3] Soochow Univ, Sch Urban Rail Transportat, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Saddle point problems; Preconditioning; RPSS preconditioner; Eigenvalues; Krylov subspace method; DIMENSIONAL FACTORIZATION PRECONDITIONER; OPTIMAL PARAMETERS; ITERATION METHODS;
D O I
10.4208/jcm.1710-m2017-0065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a class of improved relaxed positive-definite and skew-Hermitian splitting (IRPSS) preconditioners for saddle point problems. These preconditioners are easier to be implemented than the relaxed positive-definite and skew-Hermitian splitting (RPSS) preconditioner at each step for solving the saddle point problem. We study spectral properties and the minimal polynomial of the IRPSS preconditioned saddle point matrix. A theoretical optimal IRPSS preconditioner is also obtained. Numerical results show that our proposed IRPSS preconditioners are superior to the existing ones in accelerating the convergence rate of the GMRES method for solving saddle point problems.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 50 条
  • [41] Preconditioned Positive-Definite and Skew-Hermitian Splitting Iteration Methods for Continuous Sylvester Equations AX plus XB = C
    Zhou, Rong
    Wang, Xiang
    Tang, Xiao-Bin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (01) : 55 - 69
  • [42] Semi-Convergence Of The Local Hermitian And Skew-Hermitian Splitting Iteration Methods For Singular Generalized Saddle Point Problems
    Li, Jianlei
    Zhang, Qingnian
    Wu, Shiliang
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 82 - 90
  • [43] On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems
    Bai, Zhong-Zhi
    Golub, Gene H.
    Ng, Michael K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (2-3) : 413 - 440
  • [44] ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER
    Hezari, Davod
    Edalatpour, Vahid
    Feyzollahzadeh, Hadi
    Salkuyeh, Davod Khojasteh
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (01) : 18 - 32
  • [45] Updated preconditioned Hermitian and skew-Hermitian splitting-type iteration methods for solving saddle-point problems
    Fang Chen
    Tian-Yi Li
    Kang-Ya Lu
    Computational and Applied Mathematics, 2020, 39
  • [46] On parameterized generalized skew-Hermitian triangular splitting iteration method for singular and nonsingular saddle point problems
    Zhang, Guo-Feng
    Liao, Li-Dan
    Liang, Zhao-Zheng
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 340 - 359
  • [47] Updated preconditioned Hermitian and skew-Hermitian splitting-type iteration methods for solving saddle-point problems
    Chen, Fang
    Li, Tian-Yi
    Lu, Kang-Ya
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [48] Semi-regularized Hermitian and Skew-Hermitian Splitting Preconditioning for Saddle-Point Linear Systems
    Lu, Kang-Ya
    Li, Shu-Jiao
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (04) : 1422 - 1445
  • [49] A note on the modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems
    School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
    WSEAS Trans. Math., 2008, 5 (323-332): : 323 - 332
  • [50] Semi-regularized Hermitian and Skew-Hermitian Splitting Preconditioning for Saddle-Point Linear Systems
    Kang-Ya Lu
    Shu-Jiao Li
    Communications on Applied Mathematics and Computation, 2023, 5 : 1422 - 1445