Single-Particle Mobility Analysis Enables Ratiometric Detection of Cancer Markers under Darkfield Tracking Microscopy

被引:7
|
作者
Chen, Yancao [1 ]
Tian, Yueyue [1 ]
Yang, Qian [1 ]
Shang, Jinhui [1 ]
Tang, Decui [1 ]
Xiong, Bin [1 ]
Zhang, Xiao-Bing [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Mol Sci & Biomed Lab, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
DYNAMIC LIGHT-SCATTERING; GOLD NANOPARTICLE PROBES; PLASMONIC NANOPARTICLES; PROTEIN-DETECTION; ANALYSIS NTA; ASSAY; IMMUNOASSAY; ANTIGEN; LEVEL; SIZE;
D O I
10.1021/acs.analchem.9b05512
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Here, we introduced a single-particle mobility analysis-based ratiometric strategy for quantitative detection of disease-related biomarkers using antibody-conjugated gold nanoparticles (AuNPs) as probes under darkfield tracking microscopy (DFTM). On the basis of the capability of discriminating nanoparticles with different hydrodynamic sizes and detecting the changes in hydrodynamic effect, single-particle mobility analysis enables us to determine the amount of aggregated and monodispersed nanoprobes for the sandwich-like immunoassay strategy, making it possible to quantify the biotargets by analyzing the relative changes in the aggregate-to-monomer ratio of nanoprobes. By using capture antibody and detection antibody conjugated AuNPs as nanoprobes, we demonstrated ratiometric detection of carcinoembryonic antigen (CEA) over a linear dynamic range from 50 to 750 pM, which is acceptable for clinical diagnostic analysis of CEA in tumor patients. This ratiometric detection technique exhibited excellent anti-interference ability in the presence of nonspecific proteins or complicated protein mixtures. It can be anticipated that this robust technique is promising for the accurate detection of disease biomarkers and other biomolecules for biochemical and diagnostic applications.
引用
收藏
页码:10233 / 10240
页数:8
相关论文
共 50 条
  • [21] High-contrast single-particle tracking by selective focal plane illumination microscopy
    Ritter, Joerg G.
    Veith, Roman
    Siebrasse, Jan-Peter
    Kubitscheck, Ulrich
    OPTICS EXPRESS, 2008, 16 (10) : 7142 - 7160
  • [23] Automated single particle detection and tracking for large microscopy datasets
    Wilson, Rhodri S.
    Yang, Lei
    Dun, Alison
    Smyth, Annya M.
    Duncan, Rory R.
    Rickman, Colin
    Lu, Weiping
    ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (05):
  • [24] Dynamic signal of live biological cells under interferometric scattering (iSCAT) microscopy and its impacts on single-particle tracking
    Cheng, Ching-Ya
    Liao, Yi-Hung
    Hsieh, Chia-Lung
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (36)
  • [25] Point Spread Function Engineering for Spiral Phase Interferometric Scattering Microscopy Enables Robust 3D Single-Particle Tracking and Characterization
    Brooks, Nathan J.
    Liu, Chih-Chen
    Chen, Yan-Hsien
    Hsieh, Chia-Lung
    ACS PHOTONICS, 2024, 11 (12): : 5239 - 5250
  • [26] Image processing for electron microscopy single-particle analysis using XMIPP
    Sjors H W Scheres
    Rafael Núñez-Ramírez
    Carlos O S Sorzano
    José María Carazo
    Roberto Marabini
    Nature Protocols, 2008, 3 : 977 - 990
  • [27] Image processing for electron microscopy single-particle analysis using XMIPP
    Scheres, Sjors H. W.
    Nunez-Ramirez, Rafael
    Sorzano, Carlos O. S.
    Maria Carazo, Jose
    Marabini, Roberto
    NATURE PROTOCOLS, 2008, 3 (06) : 977 - 990
  • [28] Statistical Analysis and Deblurring of Class Averages in Single-Particle Electron Microscopy
    Park, Wooram
    Madden, Dean R.
    Rockmore, Daniel N.
    Chirikjian, Gregory S.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 384A - 384A
  • [29] Single-Particle Tracking Analysis using the Radius of Gyration Tensor, Revisited
    Saxton, Michael J.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 487A - 487A
  • [30] Analysis and refinement of 2D single-particle tracking experiments
    Kerkhoff, Yannic
    Block, Stephan
    BIOINTERPHASES, 2020, 15 (02)