Finite simple additively idempotent semirings

被引:15
|
作者
Kendziorra, Andreas [1 ]
Zumbraegel, Jens [1 ]
机构
[1] Univ Coll Dublin, Claude Shannon Inst, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Semirings; Semimodules; Semilattices; Join-morphisms;
D O I
10.1016/j.jalgebra.2013.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Since for the classification of finite (congruence-)simple semirings it remains to classify the additively idempotent semirings, we progress on the characterization of finite simple additively idempotent semirings as semirings of join-morphisms of a semilattice. We succeed in doing this for many cases, amongst others for every semiring of this kind with an additively neutral element. As a consequence we complete the classification of finite simple semirings with an additively neutral element. To complete the classification of all finite simple semirings it remains to classify some very specific semirings, which will be discussed here. Our results employ the theory of idempotent irreducible semimodules, which we develop further. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 64
页数:22
相关论文
共 50 条
  • [41] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    [J]. RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [42] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    [J]. SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [43] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    [J]. RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [44] Idempotent semirings with a commutative additive reduct
    Xianzhong Zhao
    [J]. Semigroup Forum, 2002, 64 : 289 - 296
  • [45] IDEMPOTENT DISTRIBUTIVE SEMIRINGS .2.
    PASTIJN, F
    [J]. SEMIGROUP FORUM, 1983, 26 (1-2) : 151 - 166
  • [46] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    [J]. Semigroup Forum, 2017, 94 : 610 - 617
  • [47] Idempotent semirings with a commutative additive reduct
    Zhao, XZ
    [J]. SEMIGROUP FORUM, 2002, 64 (02) : 289 - 296
  • [48] Varieties of idempotent semirings with commutative addition
    Pastijn, F
    Zhao, XZ
    [J]. ALGEBRA UNIVERSALIS, 2005, 54 (03) : 301 - 321
  • [49] REGULAR ADDITIVELY INVERSE SEMIRINGS
    Sen, M. K.
    Maity, S. K.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (01): : 137 - 146
  • [50] Classification of finite congruence-simple semirings with zero
    Zumbragel, Jens
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (03) : 363 - 377