Orderly Arranged Bead-Chain Cu2O-Mn3O4-NiO Ternary Nanocomposites with High Specific Capacitance for Supercapacitors

被引:4
|
作者
Su, Lei [1 ,2 ]
Zhang, Chunyong [1 ,2 ]
Shu, Li [2 ,3 ]
Huang, Linna [1 ,2 ]
Li, Jianning [1 ,2 ]
Qin, Hengfei [2 ,3 ]
机构
[1] Jiangsu Univ Technol, Jiangsu Key Lab Precious Met Chem & Technol, Changzhou 213001, Peoples R China
[2] Jiangsu Univ Technol, Sch Chem & Environm Engn, Changzhou 213001, Peoples R China
[3] Jiangsu Univ Technol, Jiangsu Prov Key Labs E Waste Recycling, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercapacitor; nanocomposites; electrospinning; electrochemical performance; ELECTRODE MATERIAL; CHARGE STORAGE; CARBON NANOFIBERS; PERFORMANCE; NANOWIRES; HYBRID; FABRICATION; ENERGY; CU2O; NIO;
D O I
10.1142/S1793292020500824
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of metal oxide nanocomposites have been successfully synthesized by electrospinning technology. The obtained nanocomposites (Cu2O-Mn3O4-NiO) are an ordered arrangement of metal oxide particles (10 nm), with the shape like bead chain. The acquired Cu2O-Mn3O4-NiO ternary nanocomposites were used as electrode materials to manufacture a supercapacitor. Electrochemical tests showed that the synthesis of nanocomposites made of electrode materials had good electrochemical performance in 6 mol/L KOH electrolyte. The results showed that at a scan rate of 5 mV/s, the specific capacitance of Cu2O-Mn3O4-NiO had a larger specific capacitance of 1306 F/g than NiO, Cu2O-NiO and Mn3O4-NiO. The excellent electrochemical performance showed that the electrostatic spinning method is an effective technology for developing nanocomposites for energy storage devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Cu2+ ions inducing the growth of porous Co3O4 nanospheres as high-capacity supercapacitors
    Liu, Rongmei
    Jiang, Zixiang
    Liu, Qi
    Zhu, Xiandong
    Chen, Weiye
    CRYSTENGCOMM, 2015, 17 (24): : 4449 - 4454
  • [42] Unique porous Mn2O3/C cube decorated by Co3O4 nanoparticle: Lowcost and high-performance electrode materials for asymmetric supercapacitors
    Zhao, Jing
    Li, Yu
    Xu, Zongying
    Wang, Dawei
    Ban, Chaolei
    Zhang, Huaihao
    ELECTROCHIMICA ACTA, 2018, 289 : 72 - 81
  • [43] Mn3O4/Co(OH)2 cactus-type nanoarrays for high-energy-density asymmetric supercapacitors
    Ya Wang
    Jiangyu Hao
    Wenpo Li
    Xiuli Zuo
    Bin Xiang
    Yujie Qiang
    Xuefeng Zou
    Bochuan Tan
    Qin Hu
    Feng Chen
    Journal of Materials Science, 2020, 55 : 724 - 737
  • [44] Mn3O4/Co(OH)2 cactus-type nanoarrays for high-energy-density asymmetric supercapacitors
    Wang, Ya
    Hao, Jiangyu
    Li, Wenpo
    Zuo, Xiuli
    Xiang, Bin
    Qiang, Yujie
    Zou, Xuefeng
    Tan, Bochuan
    Hu, Qin
    Chen, Feng
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (02) : 724 - 737
  • [45] General ion-exchanged method synthesized 3D heterostructured MCo2O4/Co3O4 nanocomposites (M= Mn, Fe, Ni, Cu and Zn)
    Gu, Zhengxiang
    Zhang, Xiaojun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 796 - 803
  • [47] Introducing of WO3@NiCo2O4/rGO ternary nanocomposites as active material for high-performance supercapacitor applications
    Ansarinejad, Hanieh
    Shabani-Nooshabadi, Mehdi
    Ghoreishi, Sayed Mehdi
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [48] Combination of Ternary Fe3O4/TiO2/CuO Nanocomposites and Nanographene Platelets: High Performance Photo and Sonocatalysis
    Taufik, Ardiansyah
    Saleh, Rosari
    INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE AND NANOTECHNOLOGY 2016 (ICESNANO 2016), 2017, 1788
  • [49] Construction of IrO2@Mn3O4 core-shell heterostructured nanocomposites for high performance symmetric supercapacitor device
    Beknalkar, S. A.
    Teli, A. M.
    Harale, N. S.
    Shin, J. C.
    Patil, P. S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 887
  • [50] Design of high-performance asymmetric supercapacitors (Cu-BDC@Ni1.5Mn0.5-LDH//V2O3/C@Fe0.75Mn0.65O) and study of electrode materials
    Liu, Lei
    Xiong, Luyang
    Jiang, Sisi
    Zhao, Qian
    Jiang, Tingshun
    JOURNAL OF ENERGY STORAGE, 2024, 75