A Novel Density Peaks Clustering Algorithm Based on Local Reachability Density

被引:2
|
作者
Wang, Hanqing [1 ]
Zhou, Bin [1 ]
Zhang, Jianyong [2 ]
Cheng, Ruixue [2 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Sipailou Rd 2, Nanjing, Jiangsu, Peoples R China
[2] Teesside Univ, Sch Comp Engn & Digital Technol, Middlesbrough TS1 3BA, Cleveland, England
基金
中国国家自然科学基金;
关键词
Clustering algorithm; Density peaks clustering; Local reachability density; Domino effect;
D O I
10.2991/ijcis.d.200603.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel clustering algorithm named local reachability density peaks clustering (DPC) which uses local reachability density, improve the performance of the density peaks clustering algorithm (DPC) is proposed in this paper. This algorithm enhances robustness by removing the cutoff distance dc which is a sensitive parameter from the DPC. In addition, anew allocation strategy is developed to eliminate the domino effect, which often occurs in DPC. The experimental results confirm that this algorithm is feasible and effective. (C) 2020 The Authors. Published by Atlantis Press SARL.
引用
收藏
页码:690 / 697
页数:8
相关论文
共 50 条
  • [41] A Novel Approximate Spectral Clustering Algorithm With Dense Cores and Density Peaks
    Cheng, Dongdong
    Huang, Jinlong
    Zhang, Sulan
    Zhang, Xiaohua
    Luo, Xin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (04): : 2348 - 2360
  • [42] A novel density deviation multi-peaks automatic clustering algorithm
    Zhou, Wei
    Wang, Limin
    Han, Xuming
    Parmar, Milan
    Li, Mingyang
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 177 - 211
  • [43] Density peaks clustering algorithm based on kernel density estimation and minimum spanning tree
    Fan T.
    Li X.
    Hou J.
    Liu B.
    Kang P.
    [J]. International Journal of Innovative Computing and Applications, 2022, 13 (5-6) : 336 - 350
  • [44] A novel density deviation multi-peaks automatic clustering algorithm
    Wei Zhou
    Limin Wang
    Xuming Han
    Milan Parmar
    Mingyang Li
    [J]. Complex & Intelligent Systems, 2023, 9 : 177 - 211
  • [45] Density peaks clustering based on balance density and connectivity
    Zhang, Qinghua
    Dai, Yongyang
    Wang, Guoyin
    [J]. PATTERN RECOGNITION, 2023, 134
  • [46] An Adaptive Clustering Algorithm Based on Local-Density Peaks for Imbalanced Data Without Parameters
    Tong, Wuning
    Wang, Yuping
    Liu, Delong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3419 - 3432
  • [47] An Adaptive Clustering Algorithm by Finding Density Peaks
    Xie, Juanying
    Jiang, Weiliang
    [J]. PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 317 - 325
  • [48] Local density based distributed clustering algorithm
    Ni, Wei-Wei
    Chen, Geng
    Wu, Ying-Jie
    Sun, Zhi-Hui
    [J]. Ruan Jian Xue Bao/Journal of Software, 2008, 19 (09): : 2339 - 2348
  • [49] General density-peaks-clustering algorithm
    Li, Tianyi
    Yue, Shihong
    Sun, Chang
    [J]. 2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [50] Clustering ensemble based on density peaks
    Chu R.-H.
    Wang H.-J.
    Yang Y.
    Li T.-R.
    [J]. Wang, Hong-Jun (wanghongjun@swjtu.edu.cn), 1600, Science Press (42): : 1401 - 1412