Global and Local Spatial Autocorrelation in Predictive Clustering Trees

被引:0
|
作者
Stojanova, Daniela [1 ]
Ceci, Michelangelo [2 ]
Appice, Annalisa [2 ]
Malerba, Donato [2 ]
Dzeroski, Saso [1 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana, Slovenia
[2] Uni degli Stud Bari, Dept Informat, Bari, Italy
来源
DISCOVERY SCIENCE | 2011年 / 6926卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial autocorrelation is the correlation among data values, strictly due to the relative location proximity of the objects that the data refer to. This statistical property clearly indicates a violation of the assumption of observation independence - a pre-condition assumed by most of the data mining and statistical models. Inappropriate treatment of data with spatial dependencies could obfuscate important insights when spatial autocorrelation is ignored. In this paper, we propose a data mining method that explicitly considers autocorrelation when building the models. The method is based on the concept of predictive clustering trees (PCTs). The proposed approach combines the possibility of capturing both global and local effects and dealing with positive spatial autocorrelation. The discovered models adapt to local properties of the data, providing at the same time spatially smoothed predictions. Results show the effectiveness of the proposed solution.
引用
收藏
页码:307 / +
页数:3
相关论文
共 50 条
  • [41] Global and local clustering with kNN and local PCA
    Lin Wu
    Xiaofeng Zhu
    Tao Tong
    [J]. Multimedia Tools and Applications, 2018, 77 : 29727 - 29738
  • [42] Analysis of time series data with predictive clustering trees
    Dzeroski, Saso
    Gjorgjioski, Valentin
    Slavkov, Ivica
    Struyf, Jan
    [J]. KNOWLEDGE DISCOVERY IN INDUCTIVE DATABASES, 2007, 4747 : 63 - +
  • [43] Semi-supervised oblique predictive clustering trees
    Stepišnik, Tomaž
    Kocev, Dragi
    [J]. PeerJ Computer Science, 2021, 7 : 1 - 20
  • [44] Semi-supervised oblique predictive clustering trees
    Stepisnik, Tomaz
    Kocev, Dragi
    [J]. PEERJ COMPUTER SCIENCE, 2021,
  • [45] Image Representation, Annotation and Retrieval with Predictive Clustering Trees
    Dimitrovski, Ivica
    Kocev, Dragi
    Loskovska, Suzana
    Dzeroski, Saso
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT III, 2017, 10536 : 363 - 367
  • [46] Exploring the spatial patterns of vegetation fragmentation using local spatial autocorrelation indices
    Kowe, Pedzisai
    Mutanga, Onisimo
    Odindi, John
    Dube, Timothy
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02)
  • [47] The Spatial Evolution of Employment Subcenters in Ciudad Juarez, Chihuahua (1994-2004): An Analysis Using Global and Local Spatial Autocorrelation Indicators
    Fuentes, Cesar M.
    Hernandez, Vladimir
    [J]. ESTUDIOS DEMOGRAFICOS Y URBANOS, 2015, 30 (02): : 433 - 467
  • [48] Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction
    Delgado, Michael S.
    Florax, Raymond J. G. M.
    [J]. ECONOMICS LETTERS, 2015, 137 : 123 - 126
  • [49] Spatial autocorrelation and local disappearances in wintering North American birds
    Koenig, WD
    [J]. ECOLOGY, 2001, 82 (09) : 2636 - 2644
  • [50] Sampling methods for archaeological predictive modeling: Spatial autocorrelation and model performance
    Comer, Jacob A.
    Comer, Douglas C.
    Dumitru, Ioana A.
    Priebe, Carey E.
    Patsolic, Jesse L.
    [J]. JOURNAL OF ARCHAEOLOGICAL SCIENCE-REPORTS, 2023, 48