On the Leray-deconvolution model for the incompressible magnetohydrodynamics equations

被引:1
|
作者
Wilson, Nicholas E. [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Magnetohydrodynamics equations; Leray-deconvolution models; Leray-alpha model; Scott-Vogelius; Helmholtz filter; FINITE-ELEMENT-METHOD; STOKES EQUATIONS; TURBULENT FLOWS; ALPHA MODEL; SIMULATION; ENERGY;
D O I
10.1016/j.amc.2012.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend Leray-alpha-deconvolution modeling to the incompressible magnetohydrodynamics (MHD). The resulting model is shown to be well-posed, and have attractive limiting behavior both in its filtering radius and order of deconvolution. Additionally, we present and study a numerical scheme for the model, based on an extrapolated Crank-Nicolson finite element method. We show the numerical scheme is unconditionally stable, preserves energy and cross-helicity, and optimally converges to the MHD solution. Numerical experiments are provided that verify convergence rates, and test the scheme on benchmark problems of channel flow over a step and the Orszag-Tang vortex problem. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:10557 / 10571
页数:15
相关论文
共 50 条