On the Leray-deconvolution model for the incompressible magnetohydrodynamics equations

被引:1
|
作者
Wilson, Nicholas E. [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Magnetohydrodynamics equations; Leray-deconvolution models; Leray-alpha model; Scott-Vogelius; Helmholtz filter; FINITE-ELEMENT-METHOD; STOKES EQUATIONS; TURBULENT FLOWS; ALPHA MODEL; SIMULATION; ENERGY;
D O I
10.1016/j.amc.2012.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend Leray-alpha-deconvolution modeling to the incompressible magnetohydrodynamics (MHD). The resulting model is shown to be well-posed, and have attractive limiting behavior both in its filtering radius and order of deconvolution. Additionally, we present and study a numerical scheme for the model, based on an extrapolated Crank-Nicolson finite element method. We show the numerical scheme is unconditionally stable, preserves energy and cross-helicity, and optimally converges to the MHD solution. Numerical experiments are provided that verify convergence rates, and test the scheme on benchmark problems of channel flow over a step and the Orszag-Tang vortex problem. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:10557 / 10571
页数:15
相关论文
共 50 条
  • [1] Leray-deconvolution model to Navier–Stokes equations by finite element
    Marcelo M. de Souza
    Carolina C. Manica
    Computational and Applied Mathematics, 2017, 36 : 1161 - 1172
  • [2] The Leray-Deconvolution Regularization
    Layton, William J.
    Rebholz, Leo G.
    APPROXIMATE DECONVOLUTION MODELS OF TURBULENCE: ANALYSIS, PHENOMENOLOGY AND NUMERICAL ANALYSIS, 2012, 2042 : 121 - 144
  • [3] Leray-deconvolution model to Navier-Stokes equations by finite element
    de Souza, Marcelo M.
    Manica, Carolina C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1161 - 1172
  • [4] Increasing accuracy and efficiency in FE computations of the Leray-Deconvolution model
    Bowers, Abigail L.
    Rebholz, Leo G.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) : 720 - 736
  • [5] A high accuracy Leray-deconvolution model of turbulence and its limiting behavior
    Layton, William
    Lewandowski, Roger
    ANALYSIS AND APPLICATIONS, 2008, 6 (01) : 23 - 49
  • [6] Numerical analysis and computational testing of a high accuracy Leray-deconvolution model of turbulence
    Layton, William
    Manica, Carolina C.
    Neda, Monika
    Rebholz, Leo G.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 555 - 582
  • [7] SUPERCONVERGENCE OF THE STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Wang, Pengfei
    Huang, Pengzhan
    Wu, Jilian
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (01): : 281 - 292
  • [8] On approximate solutions of the equations of incompressible magnetohydrodynamics
    Pizzocchero, Livio
    Tassi, Emanuele
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195 (195)
  • [9] A MONOLITHIC APPROACH FOR THE INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS
    Ata, Kayhan
    Sahin, Mehmet
    COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, : 491 - 501