Discrete wavelet Petrov-Galerkin methods

被引:34
|
作者
Chen, ZY
Micchelli, CA
Xu, YS
机构
[1] Zhongshan Univ, Dept Computat Sci, Guangzhou 510275, Peoples R China
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1023/A:1014273420351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a discrete wavelet Petrov-Galerkin method for integral equations of the second kind with weakly singular kernels suitable for solving boundary integral equations. A compression strategy for the design of a fast algorithm is suggested. Estimates for the rate of convergence and computational complexity of the method are provided.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] Petrov-Galerkin methods for linear Volterra integro-differential equations
    Lin, T
    Lin, YP
    Rao, M
    Zhang, SH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) : 937 - 963
  • [32] Petrov-Galerkin methods for systems of nonlinear reaction-diffusion equations
    Wang, YM
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 96 (2-3) : 209 - 236
  • [33] Meshless local Petrov-Galerkin solution of the neutron transport equation with streamline-upwind Petrov-Galerkin stabilization
    Bassett, Brody
    Kiedrowski, Brian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 377 : 1 - 59
  • [34] A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity
    Demkowicz, Leszek
    Gopalakrishnan, Jay
    Niemi, Antti H.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 396 - 427
  • [35] Petrov-Galerkin methods for nonlinear volterra integro-differential equations
    Lin, T
    Lin, YP
    Luo, P
    Rao, M
    Zhang, SH
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (03): : 405 - 426
  • [36] Adaptive anisotropic Petrov-Galerkin methods for first order transport equations
    Dahmen, Wolfgang
    Kutyniok, Gitta
    Lim, Wang-Q
    Schwab, Christoph
    Welper, Gerrit
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 191 - 220
  • [37] A posteriori error estimations of the Petrov-Galerkin methods for fractional Helmholtz equations
    Wenting Mao
    Yanping Chen
    Huasheng Wang
    Numerical Algorithms, 2022, 89 : 1095 - 1127
  • [38] Fourier analysis of Petrov-Galerkin methods based on biorthogonal multiresolution analyses
    Gomes, SM
    Cortina, E
    WAVELET THEORY AND HARMONIC ANALYSIS IN APPLIED SCIENCES, 1997, : 119 - 140
  • [39] APPROXIMATE SYMMETRIZATION AND PETROV-GALERKIN METHODS FOR DIFFUSION-CONVECTION PROBLEMS
    BARRETT, JW
    MORTON, KW
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) : 97 - 122
  • [40] Numerical Integration with Constraints for Mesh less Local Petrov-Galerkin Methods
    Sun, L.
    Yang, G.
    Zhang, Q.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 95 (03): : 205 - 228