Comprehensive Empirical Evaluation of Deep Learning Approaches for Session-Based Recommendation in E-Commerce

被引:2
|
作者
Maher, Mohamed [1 ]
Ngoy, Perseverance Munga [1 ]
Rebriks, Aleksandrs [1 ]
Ozcinar, Cagri [1 ]
Cuevas, Josue [2 ]
Sanagavarapu, Rajasekhar [2 ]
Anbarjafari, Gholamreza [1 ,3 ,4 ]
机构
[1] Univ Tartu, Inst Technol, iCV Lab, EE-51009 Tartu, Estonia
[2] Rakuten Inc, Big Data Dept, Machine Learning Grp, Tokyo 1580094, Japan
[3] PwC Advisory, Helsinki 00180, Finland
[4] Yildiz Tech Univ, Inst Higher Educ, TR-34349 Istanbul, Turkey
关键词
session-based recommendation; information systems; deep learning; evaluation; E-commerce;
D O I
10.3390/e24111575
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Boosting the sales of e-commerce services is guaranteed once users find more items matching their interests in a short amount of time. Consequently, recommendation systems have become a crucial part of any successful e-commerce service. Although various recommendation techniques could be used in e-commerce, a considerable amount of attention has been drawn to session-based recommendation systems in recent years. This growing interest is due to security concerns over collecting personalized user behavior data, especially due to recent general data protection regulations. In this work, we present a comprehensive evaluation of the state-of-the-art deep learning approaches used in the session-based recommendation. In session-based recommendation, a recommendation system counts on the sequence of events made by a user within the same session to predict and endorse other items that are more likely to correlate with their preferences. Our extensive experiments investigate baseline techniques (e.g., nearest neighbors and pattern mining algorithms) and deep learning approaches (e.g., recurrent neural networks, graph neural networks, and attention-based networks). Our evaluations show that advanced neural-based models and session-based nearest neighbor algorithms outperform the baseline techniques in most scenarios. However, we found that these models suffer more in the case of long sessions when there exists drift in user interests, and when there are not enough data to correctly model different items during training. Our study suggests that using the hybrid models of different approaches combined with baseline algorithms could lead to substantial results in session-based recommendations based on dataset characteristics. We also discuss the drawbacks of current session-based recommendation algorithms and further open research directions in this field.
引用
收藏
页数:39
相关论文
共 50 条
  • [11] Contrastive Learning for Session-Based Recommendation
    Chen, Yan
    Qian, Wanhui
    Liu, Dongqin
    Su, Yipeng
    Zhou, Yan
    Han, Jizhong
    Li, Ruixuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 358 - 369
  • [12] Evaluation of session-based recommendation algorithms
    Malte Ludewig
    Dietmar Jannach
    User Modeling and User-Adapted Interaction, 2018, 28 : 331 - 390
  • [13] Evaluation of session-based recommendation algorithms
    Ludewig, Malte
    Jannach, Dietmar
    USER MODELING AND USER-ADAPTED INTERACTION, 2018, 28 (4-5) : 331 - 390
  • [14] Product advertising recommendation in e-commerce based on deep learning and distributed expression
    Lichun Zhou
    Electronic Commerce Research, 2020, 20 : 321 - 342
  • [15] Product advertising recommendation in e-commerce based on deep learning and distributed expression
    Zhou, Lichun
    ELECTRONIC COMMERCE RESEARCH, 2020, 20 (02) : 321 - 342
  • [16] Improved Session-based Recommender System by Context Awareness in e-Commerce Domain
    Esmeli, Ramazan
    Bader-El-Den, Mohamed
    Abdullahi, Hassana
    Henderson, David
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KDIR), VOL 1:, 2021, : 37 - 47
  • [17] Scalable Deep Q-Learning for Session-Based Slate Recommendation
    Roy, Aayush Singha
    D'Amico, Edoardo
    Tragos, Elias
    Lawlor, Aonghus
    Hurley, Neil
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 877 - 882
  • [18] Collaborative Graph Learning for Session-based Recommendation
    Pan, Zhiqiang
    Cai, Fei
    Chen, Wanyu
    Chen, Chonghao
    Chen, Honghui
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 40 (04)
  • [19] Improving session-based recommendation with contrastive learning
    Tai, Wenxin
    Lan, Tian
    Wu, Zufeng
    Wang, Pengyu
    Wang, Yixiang
    Zhou, Fan
    USER MODELING AND USER-ADAPTED INTERACTION, 2023, 33 (01) : 1 - 42
  • [20] Self Contrastive Learning for Session-Based Recommendation
    Shi, Zhengxiang
    Wang, Xi
    Lipani, Aldo
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT I, 2024, 14608 : 3 - 20