An empirical attack tolerance test alters the structure and species richness of plant-pollinator networks

被引:32
|
作者
Biella, Paolo [1 ,2 ,3 ]
Akter, Asma [2 ,3 ]
Ollerton, Jeff [4 ]
Nielsen, Anders [5 ,6 ]
Klecka, Jan [3 ]
机构
[1] Univ Milano Bicocca, Dept Biotechnol & Biosci, ZooPlantLab, Milan, Italy
[2] Univ South Bohemia, Fac Sci, Ceske Budejovice, Czech Republic
[3] Czech Acad Sci, Biol Ctr, Inst Entomol, Ceske Budejovice, Czech Republic
[4] Univ Northampton, Fac Arts Sci & Technol, Northampton, England
[5] Norwegian Inst Bioecon Res, As, Norway
[6] Univ Oslo, Ctr Ecol & Evolutionary Synth CEES, Dept Biosci, Oslo, Norway
关键词
adaptive foraging; assembly and disassembly of network; community stability; ecosystem services; network reorganization; pollination; restoration; species co-extinction; SECONDARY EXTINCTIONS; ECOLOGICAL NETWORKS; BIODIVERSITY; ROBUSTNESS; MODEL; SPECIALIZATION; RESTORATION; NESTEDNESS; STABILITY; INCREASES;
D O I
10.1111/1365-2435.13642
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Ecological network theory hypothesizes that the structuring of species interactions can convey stability to the system. Investigating how these structures react to species loss is fundamental for understanding network disassembly or their robustness. However, this topic has mainly been studied in-silico so far. Here, in an experimental manipulation, we sequentially removed four generalist plants from real plant-pollinator networks. We explored the effects on, and drivers of, species and interaction disappearance, network structure and interaction rewiring. First, we compared both the local extinctions of species and interactions and the observed network indices with those expected from three co-extinction models. Second, we investigated the trends in network indices and rewiring rate after plant removal and the pollinator tendency at establishing novel links in relation to their proportional visitation to the removed plants. Furthermore, we explored the underlying drivers of network assembly with probability matrices based on ecological traits. Our results indicate that the cumulative local extinctions of species and interactions increased faster with generalist plant loss than what was expected by co-extinction models, which predicted the survival or disappearance of many species incorrectly, and the observed network indices were lowly correlated to those predicted by co-extinction models. Furthermore, the real networks reacted in complex ways to plant removal. First, networknestednessdecreased andmodularityincreased. Second, although species abundance was a main assembly rule, opportunistic random interactions and structural unpredictability emerged as plants were removed. Both these reactions could indicate network instability and fragility. Other results showed network reorganization, as rewiring rate was high and asymmetries between network levels emerged as plants increased their centrality. Moreover, the generalist pollinators that had frequently visited both the plants targeted of removal and the non-target plants tended to establish novel links more than who either had only visited the removal plants or avoided to do so. With the experimental manipulation of real networks, our study shows that despite their reorganizational ability, plant-pollinator networks changed towards a more fragile state when generalist plants are lost. A freePlain Language Summarycan be found within the Supporting Information of this article.
引用
收藏
页码:2246 / 2258
页数:13
相关论文
共 50 条
  • [31] The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation
    Aizen, Marcelo A.
    Gleiser, Gabriela
    Sabatino, Malena
    Gilarranz, Luis J.
    Bascompte, Jordi
    Verdu, Miguel
    ECOLOGY LETTERS, 2016, 19 (01) : 29 - 36
  • [32] Phenology determines the robustness of plant-pollinator networks
    Ramos-Jiliberto, Rodrigo
    Moisset de Espanes, Pablo
    Franco-Cisterna, Mauricio
    Petanidou, Theodora
    Vazquez, Diego P.
    SCIENTIFIC REPORTS, 2018, 8
  • [33] Scaling Behaviors of Plant-Pollinator Mutualistic Networks
    Hwang, Jun Kyung
    Lee, Kyoung Eun
    Maeng, Seong Eun
    Lee, Jae Woo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (06) : 3151 - 3155
  • [34] Impacts of local and landscape grassland management on the structure of plant-pollinator networks
    Larkin, Michelle
    Stanley, Dara A.
    BASIC AND APPLIED ECOLOGY, 2023, 70 : 50 - 59
  • [35] Geographic patterns in plant-pollinator mutualistic networks
    Olesen, JM
    Jordano, P
    ECOLOGY, 2002, 83 (09) : 2416 - 2424
  • [36] Opportunistic attachment assembles plant-pollinator networks
    Ponisio, Lauren C.
    Gaiarsa, Marilia P.
    Kremen, Claire
    ECOLOGY LETTERS, 2017, 20 (10) : 1261 - 1272
  • [37] Conserving diversity in Irish plant-pollinator networks
    Russo, Laura
    Fitzpatrick, Una
    Larkin, Michelle
    Mullen, Sarah
    Power, Eileen
    Stanley, Dara
    White, Cian
    O'Rourke, Aoife
    Stout, Jane C.
    ECOLOGY AND EVOLUTION, 2022, 12 (10):
  • [38] Structural dynamics of plant-pollinator mutualistic networks
    Lampo, Aniello
    Palazzi, Maria J.
    Borge-Holthoefer, Javier
    Sole-Ribalta, Albert
    PNAS NEXUS, 2024, 3 (06):
  • [39] Local and regional specialization in plant-pollinator networks
    Carstensen, Daniel W.
    Trojelsgaard, Kristian
    Ollerton, Jeff
    Morellato, Leonor Patricia C.
    OIKOS, 2018, 127 (04) : 531 - 537
  • [40] Intensive pasture management alters the composition and structure of plant-pollinator interactions in Sibiu, Romania
    Neaca, Ana -Maria
    Meis, Julia
    Knight, Tiffany
    Rakosy, Demetra
    PEERJ, 2024, 12