Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant

被引:59
|
作者
Zhang, Qingshan [1 ]
Li, Yuxiang [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GLOBAL EXISTENCE; STOKES SYSTEM; FLUID MODEL; DIFFUSION; EQUATIONS;
D O I
10.1063/1.4929658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider chemotaxis system with consumption of chemoattractant {u(t)=Delta u - chi del . (u del v), v(t)=Delta v-uv, under homogeneous Neumann boundary conditions. It is proved that if either n <= 2 or 0 < chi <= 1/6(n+1)||v(x,0)||(L)infinity((Omega)), n >= 3, the global classical solution ( u, v) of this problem converges to (<(u(0))over bar>,0) exponentially as t ->infinity, where (u(0)) over bar:= i/|Omega| integral(Omega)u(x,0)dx. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 50 条