Supermassive black holes formed by direct collapse of inflationary perturbations

被引:63
|
作者
Nakama, Tomohiro [1 ]
Suyama, Teruaki [2 ]
Yokoyama, Jun'ichi [2 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Univ Tokyo, Grad Sch Sci, Res Ctr Early Univ RESCEU, Tokyo 1130033, Japan
[3] Univ Tokyo, Grad Sch Sci, Dept Phys, Tokyo 1130033, Japan
[4] Univ Tokyo, Kavli Inst Phys & Math Universe Kavli IPMU, Kashiwa, Chiba 2778568, Japan
关键词
DIGITAL SKY SURVEY; Z-SIMILAR-TO-6; QUASARS; DENSITY PERTURBATIONS; REDSHIFT; CONSTRAINTS; DISCOVERY; DYNAMICS; GENERATION; SPECTRUM; SAMPLE;
D O I
10.1103/PhysRevD.94.103522
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial black holes, whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradicting Cosmic Background Explorer/Far Infrared Absolute Spectrophotometer (COBE/FIRAS) upper limits on cosmic microwave background (CMB) spectral distortions. In our model, the observable Universe consists of two kinds of many small patches which experienced different expansion histories during inflation. Primordial perturbations large enough to form primordial black holes are realized on patches that experienced more Hubble expansion than the others. By making these patches the minor component, the rarity of supermassive black holes can be explained. On the other hand, most regions of the Universe experienced the standard history and, hence, only have standard-almost-scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures of the Universe. Thus, our mechanism can evade the constraint from the nondetection of the CMB distortion set by the COBE/FIRAS measurement. Our model predicts the existence of supermassive black holes even at redshifts much higher than those observed. Hence, our model can be tested by future observations peeking into the higher-redshift Universe.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Coalescing supermassive black holes
    Anon
    Scientific American, 2002, 287 (04)
  • [42] SUPERMASSIVE BLACK-HOLES
    VALTONEN, M
    NEW SCIENTIST, 1978, 77 (1093) : 662 - 664
  • [43] Supermassive black holes and their environments
    Colberg, Joerg M.
    Di Matteo, Tiziana
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 387 (03) : 1163 - 1178
  • [44] Supermassive black holes in the universe
    Brunthaler, A
    Falcke, H
    ROLE OF VLBI IN ASTROPHYSICS, ASTROMETRY AND GEODESY, 2004, 135 : 143 - 156
  • [45] Dynamics of supermassive black holes
    Hemsendorf, M
    Dorband, N
    Merritt, D
    ASTROPHYSICAL SUPERCOMPUTING USING PARTICLE SIMULATIONS, 2003, (208): : 405 - 406
  • [46] Formation of supermassive black holes
    Marta Volonteri
    The Astronomy and Astrophysics Review, 2010, 18 : 279 - 315
  • [47] Could supermassive black holes be quintessential primordial black holes?
    Bean, R
    Magueijo, J
    PHYSICAL REVIEW D, 2002, 66 (06):
  • [48] Signatures of primordial black holes as seeds of supermassive black holes
    Luis Bernal, Jose
    Raccanelli, Alvise
    Verde, Licia
    Silk, Joseph
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (05):
  • [49] The Birth of Binary Direct-collapse Black Holes
    Latif, Muhammad A.
    Khochfar, Sadegh
    Whalen, Daniel
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 892 (01)
  • [50] Triggering the Formation of Direct Collapse Black Holes by Their Congeners
    Yue, Bin
    Ferrara, Andrea
    Pacucci, Fabio
    Omukai, Kazuyuki
    ASTROPHYSICAL JOURNAL, 2017, 838 (02):