A relation for the Jones-Wenzl projector and tensor space representations of the Temperley-Lieb algebra

被引:2
|
作者
Bytsko, Andrei [1 ,2 ]
机构
[1] Univ Geneva, Sect Math, CP 64, CH-1211 Geneva 4, Switzerland
[2] Russian Acad Sci, Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
来源
LINEAR & MULTILINEAR ALGEBRA | 2020年 / 68卷 / 11期
基金
瑞士国家科学基金会; 俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
Temperley-Lieb algebra; tensor space representations; YANG-BAXTER EQUATION;
D O I
10.1080/03081087.2019.1577796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A relation for the Jones-Wenzl projector is proven. It has the following consequence for representations of the Temperley-Lieb algebra on tensor product spaces: if such a representation is built from a Hermitian n x n matrix T of rank r such that T-2 = QT, then either n(2) = Q(2)r and Q(2) = 1, 2, 3 or n(2) >= 4r. For the latter class of representations, new examples are found. This includes explicit examples for r = 2,3,4 and any n >= r (with one exception) and a solution for n = r+1 with arbitrary r.
引用
收藏
页码:2239 / 2253
页数:15
相关论文
共 50 条
  • [21] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +
  • [22] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317
  • [23] Ribbon Graphs and Temperley-Lieb Algebra
    Chbili, Nafaa
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 299 - 312
  • [24] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 277 - +
  • [25] Seminormal forms for the Temperley-Lieb algebra
    Bastias, Katherine Ormeno
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRA, 2025, 662 : 852 - 901
  • [26] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [27] REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS
    MARTIN, PP
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (03) : 485 - 503
  • [28] THE REPRESENTATIONS OF TEMPERLEY-LIEB ALGEBRA AND ENTANGLEMENT IN A YANG-BAXTER SYSTEM
    Sun, Chunfang
    Wang, Gangcheng
    Hu, Taotao
    Zhou, Chengcheng
    Wang, Qingyong
    Xue, Kang
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (06) : 1285 - 1293
  • [29] Cyclic representations of the periodic Temperley-Lieb algebra, complex Virasoro representations and stochastic processes
    Alcaraz, Francisco C.
    Ram, Arun
    Rittenberg, Vladimir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (21)
  • [30] The two-boundary Temperley-Lieb algebra
    de Gier, Jan
    Nichols, Alexander
    JOURNAL OF ALGEBRA, 2009, 321 (04) : 1132 - 1167