A relation for the Jones-Wenzl projector and tensor space representations of the Temperley-Lieb algebra

被引:2
|
作者
Bytsko, Andrei [1 ,2 ]
机构
[1] Univ Geneva, Sect Math, CP 64, CH-1211 Geneva 4, Switzerland
[2] Russian Acad Sci, Steklov Math Inst, Fontanka 27, St Petersburg 191023, Russia
来源
LINEAR & MULTILINEAR ALGEBRA | 2020年 / 68卷 / 11期
基金
瑞士国家科学基金会; 俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
Temperley-Lieb algebra; tensor space representations; YANG-BAXTER EQUATION;
D O I
10.1080/03081087.2019.1577796
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A relation for the Jones-Wenzl projector is proven. It has the following consequence for representations of the Temperley-Lieb algebra on tensor product spaces: if such a representation is built from a Hermitian n x n matrix T of rank r such that T-2 = QT, then either n(2) = Q(2)r and Q(2) = 1, 2, 3 or n(2) >= 4r. For the latter class of representations, new examples are found. This includes explicit examples for r = 2,3,4 and any n >= r (with one exception) and a solution for n = r+1 with arbitrary r.
引用
收藏
页码:2239 / 2253
页数:15
相关论文
共 50 条