Extensions, dilations and functional models of discrete Dirac operators

被引:5
|
作者
Allahverdiev, BP [1 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkey
关键词
D O I
10.1215/ijm/1258138196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A space of boundary values is constructed for minimal symmetric discrete Dirac operators in the limit-circle case. A description of all maximal dissipative, maximal accretive and self-adjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a self-adjoint dilation of a maximal dissipative operator and its incoming and outgoing spectral representations, which make it possible to determine the scattering matrix of the dilation. We also construct a functional model of the dissipative operator and its characteristic function. Finally, we prove the completeness of the system of eigenvectors and associated vectors of dissipative operators.
引用
收藏
页码:831 / 845
页数:15
相关论文
共 50 条
  • [41] SOME FURTHER EXTENSIONS CONSIDERING DISCRETE PROPORTIONAL FRACTIONAL OPERATORS
    Rashid, Saima
    Sultana, Sobia
    Karaca, Yeliz
    Khalid, Aasma
    Chu, Yu-Ming
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [42] Self-Adjoint Extensions of Discrete Magnetic Schrodinger Operators
    Milatovic, Ognjen
    Truc, Francoise
    ANNALES HENRI POINCARE, 2014, 15 (05): : 917 - 936
  • [43] Symmetric Extensions of Normal Discrete Velocity Models
    Bobylev, A. V.
    Vinerean, M. C.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 254 - 261
  • [44] Quadratic estimates and functional calculi of perturbed Dirac operators
    Andreas Axelsson
    Stephen Keith
    Alan McIntosh
    Inventiones mathematicae, 2006, 163 : 455 - 497
  • [45] Quadratic estimates and functional calculi of perturbed Dirac operators
    Axelsson, A
    Keith, S
    McIntosh, A
    INVENTIONES MATHEMATICAE, 2006, 163 (03) : 455 - 497
  • [47] UNITARY EXTENSIONS OF ISOMETRIES AND CONTRACTIVE INTERTWINING DILATIONS
    AROCENA, R
    GOHBERG ANNIVERSARY COLLECTION, VOL 2: TOPICS IN ANALYSIS AND OPERATOR THEORY, 1989, 41 : 13 - 23
  • [48] EXTENSIONS OF THE HEISENBERG-GROUP BY DILATIONS AND FRAMES
    HOGAN, JA
    LAKEY, JD
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (02) : 174 - 199
  • [49] Spectral Flows of Dilations of Fredholm Operators
    De Nittis, Giuseppe
    Schulz-Baldes, Hermann
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 51 - 68
  • [50] Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators
    B. Cassano
    O. O. Ibrogimov
    D. Krejčiřík
    F. Štampach
    Annales Henri Poincaré, 2020, 21 : 2193 - 2217