QUANTILE-ADAPTIVE MODEL-FREE VARIABLE SCREENING FOR HIGH-DIMENSIONAL HETEROGENEOUS DATA

被引:212
|
作者
He, Xuming [1 ]
Wang, Lan [2 ]
Hong, Hyokyoung Grace [3 ,4 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[3] CUNY, Baruch Coll, Dept Stat, New York, NY 10010 USA
[4] CUNY, CIS, New York, NY 10010 USA
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 01期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Feature screening; high dimension; polynomial splines; quantile regression; randomly censored data; sure independence screening; MEDIAN REGRESSION; SURVIVAL ANALYSIS; LINEAR-MODELS; SELECTION; SPLINES; DISTRIBUTIONS;
D O I
10.1214/13-AOS1087
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a quantile-adaptive framework for nonlinear variable screening with high-dimensional heterogeneous data. This framework has two distinctive features: (1) it allows the set of active variables to vary across quantiles, thus making it more flexible to accommodate heterogeneity; (2) it is model-free and avoids the difficult task of specifying the form of a statistical model in a high dimensional space. Our nonlinear independence screening procedure employs spline approximations to model the marginal effects at a quantile level of interest. Under appropriate conditions on the quantile functions without requiring the existence of any moments, the new procedure is shown to enjoy the sure screening property in ultra-high dimensions. Furthermore, the quantile-adaptive framework can naturally handle censored data arising in survival analysis. We prove that the sure screening property remains valid when the response variable is subject to random right censoring. Numerical studies confirm the fine performance of the proposed method for various semiparametric models and its effectiveness to extract quantile-specific information from heteroscedastic data.
引用
收藏
页码:342 / 369
页数:28
相关论文
共 50 条
  • [11] Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations
    Zhang, Shucong
    Zhou, Yong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 165 : 1 - 13
  • [12] Feature Screening for High-Dimensional Survival Data via Censored Quantile Correlation
    XU Kai
    HUANG Xudong
    [J]. Journal of Systems Science & Complexity, 2021, 34 (03) : 1207 - 1224
  • [13] Feature Screening for High-Dimensional Survival Data via Censored Quantile Correlation
    Kai Xu
    Xudong Huang
    [J]. Journal of Systems Science and Complexity, 2021, 34 : 1207 - 1224
  • [14] Model-Free Feature Screening for Ultrahigh-Dimensional Data
    Zhu, Li-Ping
    Li, Lexin
    Li, Runze
    Zhu, Li-Xing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1464 - 1475
  • [15] Feature Screening for High-Dimensional Survival Data via Censored Quantile Correlation
    Xu, Kai
    Huang, Xudong
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (03) : 1207 - 1224
  • [16] Unconditional quantile regression with high-dimensional data
    Sasaki, Yuya
    Ura, Takuya
    Zhang, Yichong
    [J]. QUANTITATIVE ECONOMICS, 2022, 13 (03) : 955 - 978
  • [17] Model-free feature screening for ultra-high dimensional competing risks data
    Chen, Xiaolin
    Zhang, Yahui
    Liu, Yi
    Chen, Xiaojing
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 164
  • [18] Category-Adaptive Variable Screening for Ultra-High Dimensional Heterogeneous Categorical Data
    Xie, Jinhan
    Lin, Yuanyuan
    Yan, Xiaodong
    Tang, Niansheng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 747 - 760
  • [19] SCAD-penalized quantile regression for high-dimensional data analysis and variable selection
    Amin, Muhammad
    Song, Lixin
    Thorlie, Milton Abdul
    Wang, Xiaoguang
    [J]. STATISTICA NEERLANDICA, 2015, 69 (03) : 212 - 235
  • [20] High-dimensional model averaging for quantile regression
    Xie, Jinhan
    Ding, Xianwen
    Jiang, Bei
    Yan, Xiaodong
    Kong, Linglong
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 618 - 635