QUANTILE-ADAPTIVE MODEL-FREE VARIABLE SCREENING FOR HIGH-DIMENSIONAL HETEROGENEOUS DATA

被引:212
|
作者
He, Xuming [1 ]
Wang, Lan [2 ]
Hong, Hyokyoung Grace [3 ,4 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[3] CUNY, Baruch Coll, Dept Stat, New York, NY 10010 USA
[4] CUNY, CIS, New York, NY 10010 USA
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 01期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Feature screening; high dimension; polynomial splines; quantile regression; randomly censored data; sure independence screening; MEDIAN REGRESSION; SURVIVAL ANALYSIS; LINEAR-MODELS; SELECTION; SPLINES; DISTRIBUTIONS;
D O I
10.1214/13-AOS1087
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a quantile-adaptive framework for nonlinear variable screening with high-dimensional heterogeneous data. This framework has two distinctive features: (1) it allows the set of active variables to vary across quantiles, thus making it more flexible to accommodate heterogeneity; (2) it is model-free and avoids the difficult task of specifying the form of a statistical model in a high dimensional space. Our nonlinear independence screening procedure employs spline approximations to model the marginal effects at a quantile level of interest. Under appropriate conditions on the quantile functions without requiring the existence of any moments, the new procedure is shown to enjoy the sure screening property in ultra-high dimensions. Furthermore, the quantile-adaptive framework can naturally handle censored data arising in survival analysis. We prove that the sure screening property remains valid when the response variable is subject to random right censoring. Numerical studies confirm the fine performance of the proposed method for various semiparametric models and its effectiveness to extract quantile-specific information from heteroscedastic data.
引用
收藏
页码:342 / 369
页数:28
相关论文
共 50 条
  • [1] Model-free feature screening for high-dimensional survival data
    Lin, Yuanyuan
    Liu, Xianhui
    Hao, Meiling
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1617 - 1636
  • [2] Quantile-adaptive variable screening in ultra-high dimensional varying coefficient models
    Zhang, Junying
    Zhang, Riquan
    Lu, Zhiping
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (04) : 643 - 654
  • [3] Model-free feature screening for high-dimensional survival data
    Yuanyuan Lin
    Xianhui Liu
    Meiling Hao
    [J]. Science China Mathematics, 2018, 61 : 1617 - 1636
  • [4] Model-free feature screening for high-dimensional survival data
    Yuanyuan Lin
    Xianhui Liu
    Meiling Hao
    [J]. Science China Mathematics, 2018, 61 (09) : 79 - 98
  • [5] A model-free variable screening method for optimal treatment regimes with high-dimensional survival data
    Yang, Cheng-Han
    Cheng, Yu-Jen
    [J]. BIOMETRIKA, 2024,
  • [6] Quantile-Adaptive Sufficient Variable Screening by Controlling False Discovery
    Yuan, Zihao
    Chen, Jiaqing
    Qiu, Han
    Huang, Yangxin
    [J]. ENTROPY, 2023, 25 (03)
  • [7] Model-Free Statistical Inference on High-Dimensional Data
    Guo, Xu
    Li, Runze
    Zhang, Zhe
    Zou, Changliang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [8] An efficient model-free approach to interaction screening for high dimensional data
    Xiong, Wei
    Pan, Han
    Wang, Jianrong
    Tian, Maozai
    [J]. STATISTICS IN MEDICINE, 2023, 42 (10) : 1583 - 1605
  • [9] Projection quantile correlation and its use in high-dimensional grouped variable screening
    Liu, Jicai
    Si, Yuefeng
    Niu, Yong
    Zhang, Riquan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [10] A robust variable screening method for high-dimensional data
    Wang, Tao
    Zheng, Lin
    Li, Zhonghua
    Liu, Haiyang
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1839 - 1855