New evidence for (0,2) target space duality

被引:3
|
作者
Anderson, Lara B. [1 ]
Feng, He [1 ]
机构
[1] Virginia Tech, Dept Phys, Robeson Hall, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
heterotic string theory; string duality; gauged linear sigma models; MASSLESS SPECTRUM; MANIFOLDS;
D O I
10.1088/1751-8121/50/6/064004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the context of (0, 2) gauged linear sigma models, we explore chains of perturbatively dual heterotic string compactifications. The notion of target space duality originates in non-geometric phases and can be used to generate distinct GLSMs with shared geometric phases leading to apparently identical target space theories. To date, this duality has largely been studied at the level of counting states in the effective theories. We extend this analysis to the effective potential and loci of enhanced symmetry in dual theories. By engineering vector bundles with non-trivial constraints arising from slope-stability (i.e. D-terms) and holomorphy (i.e. F-terms) the detailed structure of the vacuum space of the dual theories can be explored. Our results give new evidence that GLSM target space duality may provide important hints towards a more complete understanding of (0, 2) string dualities.
引用
收藏
页数:53
相关论文
共 50 条
  • [21] (0,2) hybrid models
    Bertolini, Marco
    Plesser, M. Ronen
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):
  • [22] (0,2) hybrid models
    Marco Bertolini
    M. Ronen Plesser
    Journal of High Energy Physics, 2018
  • [23] Global Aspects of (0,2) Moduli Space: Toric Varieties and Tangent Bundles
    Ron Donagi
    Zhentao Lu
    Ilarion V. Melnikov
    Communications in Mathematical Physics, 2015, 338 : 1197 - 1232
  • [24] Global Aspects of (0,2) Moduli Space: Toric Varieties and Tangent Bundles
    Donagi, Ron
    Lu, Zhentao
    Melnikov, Ilarion V.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (03) : 1197 - 1232
  • [25] THE PARTIAL-DIFFERENTIAL-EQUATION-PROBLEM FOR A (0,2)-FORM IN A DFN SPACE
    SORAGGI, RL
    JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) : 380 - 403
  • [26] Generalized hypercubes and (0,2)-graphs
    Laborde, JM
    Madani, RM
    DISCRETE MATHEMATICS, 1997, 165 : 447 - 459
  • [27] Resolving singularities in (0,2) models
    Distler, J
    Greene, BR
    Morrison, DR
    NUCLEAR PHYSICS B, 1996, 481 (1-2) : 289 - 312
  • [28] ARE (0,2) MODELS STRING MIRACLES
    DINE, M
    SEIBERG, N
    NUCLEAR PHYSICS B, 1988, 306 (01) : 137 - 159
  • [29] SINGLET COUPLINGS AND (0,2)-MODELS
    DISTLER, J
    KACHRU, S
    NUCLEAR PHYSICS B, 1994, 430 (01) : 13 - 30
  • [30] SALT IMAGINARIES, LITHIUM 0,2
    Uribe, Male
    MATERIA ARQUITECTURA, 2023, (25): : 158 - 171