On the Nature of Bifurcation in a Ratio-Dependent Predator-Prey Model with Delays

被引:0
|
作者
Xu, Changjin [1 ]
Wu, Yusen [2 ]
机构
[1] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China
[2] Henan Univ Sci & Technol, Dept Math & Stat, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
HOPF-BIFURCATION; STAGE-STRUCTURE; TIME-DELAY; PERIODIC-SOLUTIONS; 2-PATCH ENVIRONMENTS; SYSTEM; STABILITY; DYNAMICS; DISPERSAL; NETWORK;
D O I
10.1155/2013/679602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A ratio-dependent predator-prey model with two delays is investigated. The conditions which ensure the local stability and the existence of Hopf bifurcation at the positive equilibrium of the system are obtained. It shows that the two different time delays have different effects on the dynamical behavior of the system. An example together with its numerical simulations shows the feasibility of the main results. Finally, main conclusions are included.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Stability and Bifurcation in a Ratio-Dependent Predator-Prey Model
    Guo, Shuang
    Zhang, Ling
    Zhao, Dongxia
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1003 - 1008
  • [2] Bifurcation analysis for a ratio-dependent predator-prey system with multiple delays
    Lv, Dingyang
    Zhang, Wen
    Tang, Yi
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3479 - 3490
  • [3] Bifurcation analysis of a diffusive ratio-dependent predator-prey model
    Song, Yongli
    Zou, Xingfu
    [J]. NONLINEAR DYNAMICS, 2014, 78 (01) : 49 - 70
  • [4] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Tang, YL
    Zhang, WN
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (06) : 699 - 712
  • [5] Heteroclinic bifurcation in a ratio-dependent predator-prey system
    Yilei Tang
    Weinian Zhang
    [J]. Journal of Mathematical Biology, 2005, 50 : 699 - 712
  • [6] Turing–Hopf bifurcation of a ratio-dependent predator-prey model with diffusion
    Qiushuang Shi
    Ming Liu
    Xiaofeng Xu
    [J]. Advances in Difference Equations, 2019
  • [7] HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR-PREY SYSTEM INVOLVING TWO DELAYS
    Karaoglu, E.
    Merdan, H.
    [J]. ANZIAM JOURNAL, 2014, 55 (03): : 214 - 231
  • [8] A ratio-dependent predator-prey model with disease in the prey
    Xiao, YN
    Chen, LS
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) : 397 - 414
  • [9] A ratio-dependent predator-prey model with diffusion
    Zeng, Xianzhong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (04) : 1062 - 1078
  • [10] Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate
    Lajmiri, Z.
    Ghaziani, R. Khoshsiar
    Orak, Iman
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 106 : 193 - 200