Improved approximation guarantees for sublinear-time Fourier algorithms

被引:40
|
作者
Iwen, Mark A. [1 ]
机构
[1] Duke Univ, Durham, NC 27708 USA
关键词
Signal recovery; Fourier analysis; Fast Fourier transforms; Approximation algorithms; SIGNAL RECOVERY;
D O I
10.1016/j.acha.2012.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper modified variants of the sparse Fourier transform algorithms from Iwen (2010) [32] are presented which improve on the approximation error bounds of the original algorithms. In addition, simple methods for extending the improved sparse Fourier transforms to higher dimensional settings are developed. As a consequence, approximate Fourier transforms are obtained which will identify a near-optimal k-term Fourier series for any given input function, f : [0, 2 pi](D) -> C, in O(k(2) . D-4) time (neglecting logarithmic factors). Faster randomized Fourier algorithm variants with runtime complexities that scale linearly in the sparsity parameter k are also presented. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:57 / 82
页数:26
相关论文
共 50 条
  • [21] Erasure-resilient sublinear-time graph algorithms
    Levi, Amit
    Pallavoor, Ramesh Krishnan S.
    Raskhodnikova, Sofya
    Varma, Nithin
    Leibniz International Proceedings in Informatics, LIPIcs, 2021, 185
  • [22] Improved Sublinear-Time Edit Distance for Preprocessed Strings
    Bringmann, Karl
    Cassis, Alejandro
    Fischer, Nick
    Nakos, Vasileios
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 229
  • [23] Sparse harmonic transforms II: bests-term approximation guarantees for bounded orthonormal product bases in sublinear-time
    Choi, Bosu
    Iwen, Mark
    Volkmer, Toni
    NUMERISCHE MATHEMATIK, 2021, 148 (02) : 293 - 362
  • [24] Sublinear-Time Algorithms for Computing & Embedding Gap Edit Distance
    Kociumaka, Tomasz
    Saha, Barna
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 1168 - 1179
  • [25] A sublinear-time randomized approximation scheme for the robinson-foulds metric
    Pattengale, Nicholas D.
    Moret, Bernard M. E.
    Lect. Notes Comput. Sci., 1600, (221-230):
  • [26] Sparse harmonic transforms II: best s-term approximation guarantees for bounded orthonormal product bases in sublinear-time
    Bosu Choi
    Mark Iwen
    Toni Volkmer
    Numerische Mathematik, 2021, 148 : 293 - 362
  • [27] A sublinear-time randomized approximation scheme for the Robinson-Foulds metric
    Pattengale, Nicholas D.
    Moret, Bernard M. E.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2006, 3909 : 221 - 230
  • [28] Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling
    Aliakbarpour, Maryam
    Biswas, Amartya Shankha
    Gouleakis, Themis
    Peebles, John
    Rubinfeld, Ronitt
    Yodpinyanee, Anak
    ALGORITHMICA, 2018, 80 (02) : 668 - 697
  • [29] Sublinear-time distributed algorithms for detecting small cliques and even cycles
    Eden, Talya
    Fiat, Nimrod
    Fischer, Orr
    Kuhn, Fabian
    Oshman, Rotem
    DISTRIBUTED COMPUTING, 2022, 35 (03) : 207 - 234
  • [30] Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling
    Maryam Aliakbarpour
    Amartya Shankha Biswas
    Themis Gouleakis
    John Peebles
    Ronitt Rubinfeld
    Anak Yodpinyanee
    Algorithmica, 2018, 80 : 668 - 697