WC nano-particle surface injection via laser shock peening onto 5A06 aluminum alloy

被引:24
|
作者
Lu, Liang [1 ]
Huang, Ting [1 ]
Zhong, Minlin [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Minist Educ, Key Lab Adv Mat Proc Technol, Beijing 100084, Peoples R China
来源
SURFACE & COATINGS TECHNOLOGY | 2012年 / 206卷 / 22期
基金
中国国家自然科学基金;
关键词
Surface injection; Laser shock peening; Nano-particle; Wear resistance; MICROSTRUCTURE; TEMPERATURE; MECHANISM; COATINGS; POWDERS;
D O I
10.1016/j.surfcoat.2012.03.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel technique, named nano-particle surface injection via laser shock peening-NPSI/LSP, for surface modification of light alloys is reported. The WC nano-particles were implanted into a 5A06 aluminum alloy surface under a very high pressure (up to Giga or even tens of Giga Pascal), produced by a Q-switched pulsed Nd:Glass laser system. The results confirmed that the surface performance of the 5A06 aluminum alloy have been dramatically improved by the NPSI/LSP process based on an integrated strengthening mechanism of laser shock peening, nano-particles and nano-particle intensified shock peening. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4525 / 4530
页数:6
相关论文
共 50 条
  • [41] Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties: Roles of shock number and energy
    He, Zhaoru
    Shen, Yizhou
    Tao, Jie
    Chen, Haifeng
    Zeng, Xiaofei
    Huang, Xin
    Abd El-Aty, Ali
    SURFACE & COATINGS TECHNOLOGY, 2021, 421
  • [42] The Effect of Laser Shock Peening on the Physical and Mechanical Properties of the Surface Layer of D16 Aluminum Alloy
    Korolev D.D.
    Kozhevnikov G.D.
    Tokachev D.A.
    Lyakhovetskii M.A.
    Petukhov Y.V.
    Russian Aeronautics, 2023, 66 (04): : 829 - 837
  • [43] Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening
    Yang, Yang
    Zhou, Kai
    Li, Guojie
    OPTICS AND LASER TECHNOLOGY, 2019, 109 : 1 - 7
  • [44] Porosity suppressing and grain refining of narrow-gap rotating laser-MIG hybrid welding of 5A06 aluminum alloy
    Yang, Xiaoyi
    Chen, Hui
    Li, Mengnie Victor
    Bu, Hengyong
    Zhu, Zongtao
    Cai, Chuang
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 : 1100 - 1113
  • [45] Study on Melt Flow and Grain Refining Ultrasonic-assisted Laser Filler Wire Welding Process of 5A06 Aluminum Alloy
    Lei, Zhenglong
    Guo, Hengtong
    Zhang, Dengming
    Li, Qian
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (06): : 78 - 86
  • [46] Investigation on laser-MIG hybrid-welded joint for 5A06 aluminum alloy: effect of the laser heat input on grain size and microhardness
    Zhou, Xudong
    Zhao, Yanqiu
    Tian, Shuhao
    Liu, Ting
    Zhan, Xiaohong
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2022, 36 (04) : 437 - 452
  • [47] Comparative Study of 5A06 Aluminum Alloy Welded Joints Obtained by Different Laser-Tungsten Inert Gas Hybrid Welding
    Zeng, Zhi
    Li, Xunbo
    Peng, Bei
    Li, Miao
    Zhou, Zhiming
    Tang, Maolin
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2015, 68 (03) : 341 - 351
  • [48] High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening
    Ren, N. F.
    Yang, H. M.
    Yuan, S. Q.
    Wang, Y.
    Tang, S. X.
    Zheng, L. M.
    Ren, X. D.
    Dai, F. Z.
    MATERIALS & DESIGN, 2014, 53 : 452 - 456
  • [49] Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminum alloy with Y-shaped groove
    Zhao, Yanqiu
    Zhou, Xudong
    Liu, Ting
    Kang, Yue
    Zhan, Xiaohong
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 57 : 847 - 856
  • [50] Microstructural evolution and mechanical properties of 7050 aluminum alloy modified via laser shock peening at different heat-treated states
    Yang, Peiyi
    Guan, Zhichen
    Qian, Wei
    Meng, Xiankai
    Zou, Shikun
    Ye, Yunxia
    Hua, Yinqun
    Cai, Jie
    MATERIALS TODAY COMMUNICATIONS, 2024, 39