Developing an Improved Statistical Approach for Survival Estimation in Bone Metastases Management: The Bone Metastases Ensemble Trees for Survival (BMETS) Model

被引:27
|
作者
Alcorn, Sara R. [1 ]
Fiksel, Jacob [2 ]
Wright, Jean L. [1 ]
Elledge, Christen R. [1 ]
Smith, Thomas J. [3 ]
Perng, Powell [1 ]
Saleemi, Sarah [1 ]
McNutt, Todd R. [1 ]
DeWeese, Theodore L. [1 ]
Zeger, Scott [2 ]
机构
[1] Johns Hopkins Sch Med, Dept Radiat Oncol & Mol Radiat Sci, Baltimore, MD 21205 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[3] Johns Hopkins Sch Med, Dept Oncol, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
PALLIATIVE RADIOTHERAPY; RADIATION-THERAPY; LIFE EXPECTANCY; CANCER-PATIENTS; RANDOM FORESTS; PROGNOSIS; COUNTS; INDEX; TOOL;
D O I
10.1016/j.ijrobp.2020.05.023
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: To determine whether a machine learning approach optimizes survival estimation for patients with symptomatic bone metastases (SBM), we developed the Bone Metastases Ensemble Trees for Survival (BMETS) to predict survival using 27 prognostic covariates. To establish its relative clinical utility, we compared BMETS with 2 simpler Cox regression models used in this setting. Methods and Materials: For 492 bone sites in 397 patients evaluated for palliative radiation therapy (RT) for SBM from January 2007 to January 2013, data for 27 clinical variables were collected. These covariates and the primary outcome of time from consultation to death were used to build BMETS using random survival forests. We then performed Cox regressions as per 2 validated models: Chow's 3-item (C-3) and Westhoff's 2-item (W-2) tools. Model performance was assessed using cross-validation procedures and measured by time-dependent area under the curve (tAUC) for all 3 models. For temporal validation, a separate data set comprised of 104 bone sites treated in 85 patients in 2018 was used to estimate tAUC from BMETS. Results: Median survival was 6.4 months. Variable importance was greatest for performance status, blood cell counts, recent systemic therapy type, and receipt of concurrent nonbone palliative RT. tAUC at 3, 6, and 12 months was 0.83, 0.81, and 0.81, respectively, suggesting excellent discrimination of BMETS across postconsultation time points. BMETS outperformed simpler models at each time, with respective tAUC at each time of 0.78, 0.76, and 0.74 for the C-3 model and 0.80, 0.78, and 0.77 for the W-2 model. For the temporal validation set, respective tAUC was similarly high at 0.86, 0.82, and 0.78. Conclusions: For patients with SBM, BMETS improved survival predictions versus simpler traditional models. Model performance was maintained when applied to a temporal validation set. To facilitate clinical use, we developed a web platform for data entry and display of BMETS-predicted survival probabilities. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:554 / 563
页数:10
相关论文
共 50 条
  • [1] External Validation of the Bone Metastases Ensemble Trees for Survival (BMETS) Machine Learning Model to Predict Survival in Patients With Symptomatic Bone Metastases
    Elledge, Christen R.
    LaVigne, Anna W.
    Fiksel, Jacob
    Wright, Jean L.
    McNutt, Todd
    Kleinberg, Lawrence R.
    Hu, Chen
    Smith, Thomas J.
    Zeger, Scott
    DeWeese, Theodore L.
    Alcorn, Sara R.
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 304 - 314
  • [2] External Validation of the Bone Metastases Ensemble Trees for Survival (BMETS) Machine Learning Model to Improve Estimation of Life Expectancy
    LaVigne, A.
    Elledge, C. R.
    Fiksel, J.
    Wright, J. L.
    McNutt, T. R.
    Kleinberg, L. R.
    Hu, C.
    Smith, T.
    Zeger, S.
    DeWeese, T. L.
    Alcorn, S. R.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S35 - S35
  • [3] Optimized Survival Evaluation to Guide Bone Metastases Management: Developing an Improved Statistical Approach
    Alcorn, S. R.
    Fiksel, J.
    Smith, T.
    Wright, J. L.
    McNutt, T. R.
    DeWeese, T. L.
    Zeger, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : S36 - S37
  • [4] Evaluation of the Clinical Utility of the Bone Metastases Ensemble Trees for Survival Decision Support Platform (BMETS-DSP): A Case-Based Pilot Assessment
    Alcorn, Sara R.
    LaVigne, Anna W.
    Elledge, Christen R.
    Fiksel, Jacob
    Hu, Chen
    Kleinberg, Lawrence
    Levin, Adam
    Smith, Thomas
    Cheng, Zhi
    Kim, Kibem
    Rao, Avani D.
    Sloan, Lindsey
    Page, Brandi
    Stinson, Susan F.
    Voong, K. Ranh
    McNutt, Todd R.
    Bowers, Michael R.
    DeWeese, Theodore L.
    Zeger, Scott
    Wright, Jean L.
    JCO CLINICAL CANCER INFORMATICS, 2022, 6 : e2200082
  • [5] Improving providers' survival estimates and selection of prognosis- and guidelines-appropriate treatment for patients with symptomatic bone metastases: Development of the Bone Metastases Ensemble Trees for Survival Decision Support Platform
    Alcorn, Sara R.
    Elledge, Christen R.
    LaVigne, Anna W.
    Kleinberg, Lawrence
    Smith, Thomas J.
    Levin, Adam S.
    Fiksel, Jacob
    Zeger, Scott
    McNutt, Todd
    DeWeese, Theodore L.
    Wright, Jean L.
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2022, 28 (04) : 581 - 598
  • [6] SURVIVAL OF PROSTATIC CANCER WITH BONE METASTASES
    KUNTZ, D
    RYCKEWAERT, A
    REVUE FRANCAISE D ETUDES CLINIQUES ET BIOLOGIQUES, 1969, 14 (06): : 609 - +
  • [7] A BRAIN METASTASES SURVIVAL MODEL USING AN ENSEMBLE TREE APPROACH
    Shumway, John
    Tan, Xianming
    Drossopoulos, Peter
    Torras, Marina
    File, Madison
    Joshi, Tushar
    Ruhashya, Ashley
    Yanagihara, Theodore
    Shen, Colette
    NEURO-ONCOLOGY, 2022, 24 : 197 - 198
  • [8] A Brain Metastases Survival Model Using an Ensemble Tree Approach
    Shumway, J. W.
    Tan, X.
    Drossopoulos, P.
    Torras, M.
    File, M.
    Joshi, T.
    Ruhashya, A.
    Yanagihara, T.
    Shen, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E125 - E126
  • [9] Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients
    Harries, M.
    Taylor, A.
    Holmberg, L.
    Agbaje, O.
    Garmo, H.
    Kabilan, S.
    Purushotham, A.
    CANCER EPIDEMIOLOGY, 2014, 38 (04) : 427 - 434
  • [10] A Predictive Model for Survival Following Palliative Radiation for Bone Metastases
    Alcorn, S. R.
    Perng, P.
    Saleemi, S.
    McNutt, T. R.
    Hales, R. K.
    Sanyal, A.
    Yenokyan, G.
    DeWeese, T. L.
    Smith, T. J.
    Ellsworth, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 : S82 - S83