Automatically measuring document similarity is imperative in natural language process-ing, with applications ranging from recommendation to duplicate document detection. State-of-the-art approach in document similarity commonly involves deep neural net-works, yet there is little study on how different architectures may be combined. Thus, we introduce the Siamese Attention-augmented Recurrent Convolutional Neural Network (S-ARCNN) that combines multiple neural network architectures. In each subnet-work of S-ARCNN, a document passes through a bidirectional Long Short-Term Memory (bi-LSTM) layer, which sends representations to local and global document modules. A local document module uses convolution, pooling, and attention layers, whereas a global document module uses last states of the bi-LSTM. Both local and global features are con-catenated to form a single document representation. Using the Quora Question Pairs data -set, we evaluated S-ARCNN, Siamese convolutional neural networks (S-CNNs), Siamese LSTM, and two BERT models. While S-CNNs (82.02% F1) outperformed S-ARCNN (79.83% F1) overall, S-ARCNN slightly outperformed S-CNN on duplicate question pairs with more than 50 words (39.96% vs. 39.42% accuracy). With the potential advantage of S-ARCNN for processing longer documents, S-ARCNN may help researchers identify collaborators with similar research interests, help editors find potential reviewers, or match resumes with job descriptions.(c) 2022 Published by Elsevier Inc.