SOME PROPERTIES OF THE SCHRODER NUMBERS

被引:9
|
作者
Qi, Feng [1 ,2 ,3 ]
Shi, Xiao-Ting [3 ]
Guo, Bai-Ni [4 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan, Peoples R China
[2] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[3] Tianjin Polytech Univ, Dept Math, Coll Sci, Tianjin 300387, Peoples R China
[4] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454010, Henan Province, Peoples R China
来源
关键词
Large Schr oder number; little Schroder numbers; convexity; complete monotonicity; product inequality; determinantal inequality; relation; Delannoy number; generating function; generalization; COMPLETE MONOTONICITY; INTEGRAL-REPRESENTATION; STIRLING NUMBERS; INEQUALITIES; GAMMA;
D O I
10.1007/s13226-016-0211-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors present some properties, including convexity, complete monotonicity, product inequalities, and determinantal inequalities, of the large Schroder numbers and find three relations between the Schroder numbers and central Delannoy numbers. Moreover, the authors sketch generalizing the Schroder numbers and central Delannoy numbers and their generating functions.
引用
收藏
页码:717 / 732
页数:16
相关论文
共 50 条
  • [41] Some Properties of Hyperfibonacci and Hyperlucas Numbers
    Cao, Ning-Ning
    Zhao, Feng-Zhen
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (08)
  • [42] SOME PROPERTIES OF FUZZY REAL NUMBERS
    Daraby, Bayaz
    Jafari, Javad
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 3 (01): : 21 - 27
  • [43] SOME PROPERTIES OF DYADIC CHAMPERNOWNE NUMBERS
    SHIOKAWA, I
    UCHIYAMA, S
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1975, 26 (1-2): : 9 - 27
  • [44] Some properties of the Schröder numbers
    Feng Qi
    Xiao-Ting Shi
    Bai-Ni Guo
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 717 - 732
  • [45] SOME ARITHMETIC PROPERTIES OF BERNOULLI NUMBERS
    Robbins, Neville
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2005, 5 (01): : 201 - 204
  • [46] Some symmetrical properties of Genocchi numbers
    Zeng, J
    DISCRETE MATHEMATICS, 1996, 153 (1-3) : 319 - 333
  • [47] SOME PROPERTIES OF THE SEQUENCE OF PRIME NUMBERS
    Copil, Vlad
    Panaitopol, Laurentiu
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 217 - 221
  • [48] Some arithmetical properties of Apery numbers
    Radoux, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 64 (1-2) : 11 - 19
  • [49] SOME MORE PROPERTIES OF CATALAN NUMBERS
    BARCUCCI, E
    VERRI, MC
    DISCRETE MATHEMATICS, 1992, 102 (03) : 229 - 237
  • [50] Hankel determinants of sums of consecutive weighted Schroder numbers
    Eu, Sen-Peng
    Wong, Tsai-Lien
    Yen, Pei-Lan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2285 - 2299