Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks

被引:5
|
作者
Ma, Xiaoke [1 ]
Sun, Penggang [1 ]
Zhao, Jianbang [2 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
[2] Northwest Agr & Forestry Univ, Coll Informat Engn, Yangling 712100, Xianyang, Peoples R China
来源
MOLECULES | 2017年 / 22卷 / 12期
关键词
multiple networks; specific modules; multi-objective optimization; network analysis; GENE-COEXPRESSION NETWORK; YEAST;
D O I
10.3390/molecules22122228
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The advances in biological technologies make it possible to generate data for multiple conditions simultaneously. Discovering the condition-specific modules in multiple networks has great merit in understanding the underlying molecular mechanisms of cells. The available algorithms transform the multiple networks into a single objective optimization problem, which is criticized for its low accuracy. To address this issue, a multi-objective genetic algorithm for condition-specific modules in multiple networks (MOGA-CSM) is developed to discover the condition-specific modules. By using the artificial networks, we demonstrate that the MOGA-CSM outperforms state-of-the-art methods in terms of accuracy. Furthermore, MOGA-CSM discovers stage-specific modules in breast cancer networks based on The Cancer Genome Atlas (TCGA) data, and these modules serve as biomarkers to predict stages of breast cancer. The proposed model and algorithm provide an effective way to analyze multiple networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Multi-objective Brainstorm Optimization Algorithm for Sparse Optimization
    Liang, J. J.
    Wang, P.
    Yue, C. T.
    Yu, K. J.
    Li, Z. H.
    Qu, B. Y.
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2211 - 2218
  • [42] Improving a multi-objective evolutionary algorithm to discover quantitative association rules
    Martinez-Ballesteros, M.
    Troncoso, A.
    Martinez-Alvarez, F.
    Riquelme, J. C.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 49 (02) : 481 - 509
  • [43] An Algorithm for Multi-Objective Multi-Agent Optimization
    Blondin, Maude J.
    Hale, Matthew
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1489 - 1494
  • [44] Multi-objective interior search algorithm for optimization: A new multi-objective meta-heuristic algorithm
    Torabi, Navid
    Tavakkoli-Moghaddam, Reza
    Najafi, Esmaiel
    Lotfi, Farhad Hosseinzadeh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (03) : 3307 - 3319
  • [45] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Khalid, Asmaa M. M.
    Hamza, Hanaa M. M.
    Mirjalili, Seyedali
    Hosny, Khaid M. M.
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17319 - 17347
  • [46] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Xiao, Jin-ke
    Li, Wei-min
    Xiao, Xin-rong
    Cheng-zhong, L., V
    APPLIED INTELLIGENCE, 2017, 46 (03) : 739 - 755
  • [47] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Asmaa M. Khalid
    Hanaa M. Hamza
    Seyedali Mirjalili
    Khaid M. Hosny
    Neural Computing and Applications, 2023, 35 : 17319 - 17347
  • [48] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Jin-ke Xiao
    Wei-min Li
    Xin-rong Xiao
    Cheng-zhong LV
    Applied Intelligence, 2017, 46 : 739 - 755
  • [49] Multi-objective Optimization Using Immune Algorithm
    Guo, Pengfei
    Wang, Xuezhi
    Han, Yingshi
    APPLIED INFORMATICS AND COMMUNICATION, PT III, 2011, 226 : 527 - 534
  • [50] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18