An Efficient method to find the Minimum Distance of Linear Block Codes

被引:0
|
作者
Askali, Mohamed [1 ]
Nouh, Said [1 ]
Belkasmi, Mostafa [1 ]
机构
[1] MohammedV Souisi Univ, SIME Labo, ENSIAS, Rabat, Morocco
关键词
Linear codes; Minimum Distance; Soft-In decode; NP-hardness; Quadratic Residue codes; Quadratic Double-Circulant Codes; BCH Codes;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding the minimum distance of linear codes is in general a NP-hard problem, we propose an efficient algorithm to attack this problem. The principle of this approach is to search code words locally around the all-zero code word perturbed by a level of noise magnitude, in other words the maximum of noise that can be corrected by a Soft-In decoder, anticipating that the resultant nearest non-zero code words will most likely contain the minimum Hamming weight code word, whose Hamming weight is equal to the minimum distance of the linear code. A numerous results prove that the proposed algorithm is valid for general linear codes and it is very fast comparing to all others known techniques, therefore it is a good tool for computing. Comparing to Joanna's works, we proof that our algorithm has a low complexity with a fast time of execution. For some linear RQs, QDCs and BCHs codes with unknown minimum distance, we give a good estimation (true) of the minimum distance where the length is less than 439.
引用
收藏
页码:773 / 779
页数:7
相关论文
共 50 条