Nonlinear multigrid method for solving the LLT model

被引:10
|
作者
Zhang, Jun [1 ]
Yang, Yu-Fei [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Changsha Univ, Dept Informat & Comp Sci, Changsha 410003, Hunan, Peoples R China
关键词
Image denoising; Dual algorithm; LLT model; Local Fourier analysis; Nonlinear multigrid method; PARTIAL-DIFFERENTIAL-EQUATIONS; TOTAL VARIATION MINIMIZATION; IMAGE; ALGORITHM;
D O I
10.1016/j.amc.2012.11.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our goal in this paper is to study a nonlinear multigrid method for solving the LLT model. In order to improve the convergence rate of the proposed multigrid method, an improved dual iteration is proposed as its smoother. Furthermore, we give the local Fourier analysis (LFAs) of the Chambolle's dual iterations and a modified smoother for solving the LLT model, respectively. Numerical results illustrate the efficiency of the proposed method and indicate that such a multigrid method is more suitable to deal with large-sized images. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4964 / 4976
页数:13
相关论文
共 50 条
  • [22] A multigrid method for solving reaction-diffusion systems
    Chiu, C
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING, 2000, 418 : 79 - 83
  • [23] A multigrid waveform relaxation method for solving the poroelasticity equations
    S. R. Franco
    C. Rodrigo
    F. J. Gaspar
    M. A. V. Pinto
    Computational and Applied Mathematics, 2018, 37 : 4805 - 4820
  • [24] Decomposition method for solving a nonlinear business cycle model
    Deeba, E
    Dibeh, G
    Khuri, S
    Xie, SS
    ANZIAM JOURNAL, 2003, 45 : 295 - 302
  • [25] ADOMIAN'S METHOD FOR SOLVING A NONLINEAR EPIDEMIC MODEL
    Alsubaie, Amjad A.
    Aljoufi, Mona D.
    Alotaibi, Abdullah G. S.
    Alfaydi, Ahmad S. S.
    Alyoubi, Rana M.
    Aljuhani, Bushra A. M.
    Alsahli, Ebtesam F. S.
    Alanazi, Badriah S.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (01): : 95 - 107
  • [26] A multigrid method for solving steady viscoelastic fluid flow
    Al Moatassime, H
    Jouron, C
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (31) : 4061 - 4080
  • [27] Multigrid Method for Solving Inverse Problems for Heat Equation
    Al-Mahdawi, Hassan K. Ibrahim
    Abotaleb, Mostafa
    Alkattan, Hussein
    Tareq, Al-Mahdawi Zena
    Badr, Amr
    Kadi, Ammar
    MATHEMATICS, 2022, 10 (15)
  • [28] A multigrid waveform relaxation method for solving the poroelasticity equations
    Franco, S. R.
    Rodrigo, C.
    Gaspar, F. J.
    Pinto, M. A. V.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4805 - 4820
  • [29] A full multigrid method for nonlinear eigenvalue problems
    JIA ShangHui
    XIE HeHu
    XIE ManTing
    XU Fei
    Science China(Mathematics), 2016, 59 (10) : 2037 - 2048
  • [30] A multigrid–homotopy method for nonlinear inverse problems
    Liu, Tao
    Computers and Mathematics with Applications, 2021, 79 (06): : 1706 - 1717