Vehicle detection of multi-source remote sensing data using active fine-tuning network

被引:48
|
作者
Wu, Xin [1 ,2 ]
Li, Wei [1 ,2 ]
Hong, Danfeng [3 ]
Tian, Jiaojiao [3 ]
Tao, Ran [1 ,2 ]
Du, Qian [4 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, D-82234 Wessling, Germany
[4] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Multi-source; Vehicle detection; Optical remote sensing imagery; Fine-tuning; Segmentation; Active classification network; OBJECT DETECTION; CLASSIFICATION; IMAGES;
D O I
10.1016/j.isprsjprs.2020.06.016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site.
引用
收藏
页码:39 / 53
页数:15
相关论文
共 50 条
  • [31] Deep fusion of hyperspectral images and multi-source remote sensing data for classification with convolutional neural network
    Zhao W.
    Li S.
    Li A.
    Zhang B.
    Chen J.
    Li, Shanshan (lishanshan@aircas.ac.cn), 1600, (25): : 1489 - 1502
  • [32] Detecting Photovoltaic Installations in Diverse Landscapes Using Open Multi-Source Remote Sensing Data
    Wang, Jinyue
    Liu, Jing
    Li, Longhui
    REMOTE SENSING, 2022, 14 (24)
  • [33] Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing
    Zhao, Yixin
    Huang, Yajun
    Sun, Xupeng
    Dong, Guanyu
    Li, Yuanqing
    Ma, Mingguo
    REMOTE SENSING, 2023, 15 (09)
  • [34] SONGHUA RIVER BASIN FLOOD MONITORING USING MULTI-SOURCE SATELLITE REMOTE SENSING DATA
    Zheng, Wei
    Shao, Jiali
    Gao, Hao
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9760 - 9763
  • [35] Characterizing water body changes in Poyang lake using multi-source remote sensing data
    Wang, Wenyu
    Yang, Peng
    Xia, Jun
    Zhang, Shengqing
    Luo, Xiangang
    Hu, Sheng
    Li, Jiang
    Chen, Nengcheng
    Zhan, Chesheng
    ENVIRONMENTAL DEVELOPMENT, 2023, 48
  • [36] IMPROVING HYDROLOGICAL FORECASTING USING MULTI-SOURCE REMOTE SENSING DATA TOGETHER WITH IN SITU MEASUREMENTS
    Karna, Juha-Petri
    Huttunen, Markus
    Metsamaki, Sari
    Vehvilainen, Bertel
    Podsechin, Victor
    Pulliainen, Jouni
    Lemmetyinen, Juha
    Kuitunen, Timo
    Rauste, Yrjo
    Berglund, Robin
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1749 - 1752
  • [37] Drought Monitoring of Spring Maize in the Songnen Plain Using Multi-Source Remote Sensing Data
    Pei, Zhifang
    Fan, Yulong
    Wu, Bin
    ATMOSPHERE, 2023, 14 (11)
  • [38] Evaluation of important phenotypic parameters of tea plantations using multi-source remote sensing data
    Li, He
    Wang, Yu
    Fan, Kai
    Mao, Yilin
    Shen, Yaozong
    Ding, Zhaotang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [39] Forest Structure Mapping of Boreal Coniferous Forests Using Multi-Source Remote Sensing Data
    Sa, Rula
    Fan, Wenyi
    REMOTE SENSING, 2024, 16 (11)
  • [40] Geospatial assessment of rooftop solar photovoltaic potential using multi-source remote sensing data
    Jiang, Hou
    Yao, Ling
    Lu, Ning
    Qin, Jun
    Liu, Tang
    Liu, Yujun
    Zhou, Chenghu
    ENERGY AND AI, 2022, 10