Fuzzy rule extraction using robust particle swarm optimization

被引:0
|
作者
Mukhopadhyay, Sumitra [1 ]
Mandal, Ajit K.
机构
[1] Univ Calcutta, AK Choudhury Sch Informat Technol, Kolkata 700073, W Bengal, India
[2] Jadavpur Univ, ETCE Dept, Kolkata 700032, W Bengal, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic fuzzy rule extraction assumes the realization of fuzzy if then rules using a pre-assigned structure rather than an optimal one. In this paper, Particle Swarm Optimization (PSO) is used to simultaneously evolve the structure and the parameters of the fuzzy rule base. However, the existing PSO based adaptation employs randomness, which makes the rate of convergence dependent on the initial states and the end result can not be reproduced repeatedly with a pre-assigned value of iterations. The algorithm has been modified by removing the randomness in parameter learning, making it very robust. The scheme provides the flexibility in extracting the optimal set of fuzzy rules for a prescribed residual error in function approximation and prediction. Simulation studies and the comprehensive analysis demonstrate that an efficient learning technique as well as the structure development of the fuzzy system, can be achieved by the proposed approach.
引用
收藏
页码:762 / 767
页数:6
相关论文
共 50 条
  • [21] Robust adaptive particle swarm optimization
    Ueno, G
    Yasuda, K
    Iwasaki, N
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 3915 - 3920
  • [22] Robust PID Controller Design Using Particle Swarm Optimization
    Lin, Liu-Hsu
    Wang, Fu-Cheng
    Yen, Jia-Yush
    ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 1673 - 1678
  • [23] Robust Microgrid Power Flow using Particle Swarm Optimization
    Lian, K. L.
    Syai'in, M.
    Liu, C. L.
    Huang, T. D.
    Chen, T. H.
    Chang, Y. R.
    Lee, Y. D.
    Ho, Y. H.
    2013 INTERNATIONAL SCHOOL ON NONSINUSOIDAL CURRENTS AND COMPENSATION (ISNCC), 2013,
  • [24] Fuzzy Particle Swarm Optimization Algorithm
    Tian, Dong-ping
    Li, Nai-qian
    FIRST IITA INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, : 263 - 267
  • [25] Fuzzy adaptive particle swarm optimization
    Shi, YH
    Eberhart, RC
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 101 - 106
  • [26] Balanced fuzzy particle swarm optimization
    Robati, Amir
    Barani, Gholam Abbas
    Pour, Hossein Nezam Abadi
    Fadaee, Mohammad Javad
    Anaraki, Javad Rahimi Pour
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (05) : 2169 - 2177
  • [27] Constrained Fuzzy Predictive Control Using Particle Swarm Optimization
    Sahed, Oussama Ait
    Kara, Kamel
    Hadjili, Mohamed Laid
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2015, 2015
  • [28] Automatic Modeling of Fuzzy Systems Using Particle Swarm Optimization
    Costa, Sergio Oliveira, Jr.
    Nedjah, Nadia
    Mourelle, Luiza de Macedo
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2010, 6113 : 35 - +
  • [29] Static security enhancement using fuzzy particle swarm optimization
    Pandiarajan, K.
    Babulal, C. K.
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2016, 35 (01) : 172 - 186
  • [30] Fuzzy Multiobjective Irrigation Planning Using Particle Swarm Optimization
    Morankar, D. V.
    Raju, K. Srinivasa
    Vasan, A.
    AshokaVardhan, L.
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2016, 142 (08) : 05016004