A direct algorithm to compute rational solutions of first order linear q-difference systems

被引:6
|
作者
Abramov, SA [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Moscow 117967, Russia
基金
俄罗斯基础研究基金会;
关键词
direct algorithms; linear q-difference equations and systems; polynomial and rational solutions; universal denominator;
D O I
10.1016/S0012-365X(01)00248-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an algorithm to compute rational function solutions to a first order system of linear q-difference equations with rational coefficients. We make use of the fact that q-difference equations bear similarity to differential equations at the point 0 and to difference equations at other points. This allows the combining of known algorithms for the differential and the difference cases. This algorithm does not require preliminary uncoupling of the given system. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [31] On a q-difference Painleve III equation:: II.: Rational solutions
    Kajiwara, K
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 (03) : 282 - 303
  • [32] Linear q-difference equations
    Abu Risha, M. H.
    Annaby, M. H.
    Ismail, M. E. H.
    Mansour, Z. S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (04): : 481 - 494
  • [33] Meromorphic functions of finite φ-order and linear q-difference equations
    Heittokangas, J.
    Wang, J.
    Wen, Z. T.
    Yu, H.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (09) : 1280 - 1309
  • [34] Holomorphic Solutions to Linear q-Difference Equations in a Banach Space
    Gefter S.L.
    Piven’ A.L.
    Journal of Mathematical Sciences, 2020, 251 (5) : 602 - 614
  • [35] An algorithm to compute Liouvillian solutions of prime order linear difference-differential equations
    Feng, Ruyong
    Singer, Michael F.
    Wu, Min
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (03) : 306 - 323
  • [36] A q-difference version of the ε-algorithm
    He, Yi
    Hu, Xing-Biao
    Tam, Hon-Wah
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
  • [37] Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations
    Barnett, D. C.
    Halburd, R. G.
    Morgan, W.
    Korhonen, R. J.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2007, 137 : 457 - 474
  • [38] Entire solutions of q-difference equations and value distribution of q-difference polynomials
    Zhang, Jilong
    Yang, Lianzhong
    ANNALES POLONICI MATHEMATICI, 2013, 109 (01) : 39 - 46
  • [39] Desingularization of First Order Linear Difference Systems with Rational Function Coefficients
    Barkatou, Moulay A.
    Jaroschek, Maximilian
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 39 - 46
  • [40] Solutions of complex difference and q-difference equations
    Wang, Yue
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,