Generation of a Picosecond Runaway Electron Beam in a Gas Gap With a Nonuniform Field

被引:49
|
作者
Mesyats, Gennady A. [1 ]
Yalandin, Michael I.
Sharypov, Konstantin A.
Shpak, Valery G. [2 ]
Shunailov, Sergel A.
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[2] Russian Acad Sci, Ural Div, Inst Electrophys, Lab Electron Accelerators, Ekaterinburg 620016, Russia
关键词
Cold cathode; field emission; gas-filled gap; nonuniform electric field; picosecond electron beam; runaway electrons; time-of-flight method;
D O I
10.1109/TPS.2008.2005884
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The formation of a picosecond beam of runaway electrons in a gas-filled acceleration gap with a cold cathode and a strongly nonuniform electric field was investigated. The experimental data obtained were compared to those characteristic of the mode of generation and acceleration of electrons in vacuum. Voltage pulses of amplitudes up to -300 kV (in a traveling wave) whose minimum rise time and FWHM did not exceed 100-150 ps were applied to the cathode. The duration and amplitude of the current pulse of the picosecond runaway electron beam behind the anode foil were measured with high time resolution. The emission region of the beam in a gas-filled diode was determined experimentally. The time-of-flight method was used to investigate the acceleration mode of particles in the gap. Information about the part played by field emission in the initiation of the runaway electron beam has been obtained. It has been demonstrated that the point within the rise time of the accelerating voltage pulse at which the beam is injected into the gap correlates with the magnitude of the macroscopic electric field at the cathode emitting edge.
引用
收藏
页码:2497 / 2504
页数:8
相关论文
共 50 条
  • [31] Formation of a Negative Streamer in a Sharply Nonuniform Electric Field and the Time of Generation of Runaway Electrons
    Beloplotov, D. V.
    Sorokin, D. A.
    Lomaev, M. I.
    Tarasenko, V. F.
    RUSSIAN PHYSICS JOURNAL, 2020, 62 (11) : 1967 - 1975
  • [32] Effective Critical Electric Field for Runaway-Electron Generation
    Stahl, A.
    Hirvijoki, E.
    Decker, J.
    Embreus, O.
    Fulop, T.
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [33] Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen
    Tarasenko, V. F.
    Baksht, E. Kh.
    Burachenko, A. G.
    Lomaev, M. I.
    Sorokin, D. A.
    Shut'ko, Yu. V.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (04) : 375 - 378
  • [34] Runaway electron beam generation by a plasma cathode in atmospheric air discharge
    D. S. Mastyugin
    V. V. Osipov
    V. I. Solomonov
    Technical Physics Letters, 2009, 35 : 487 - 490
  • [35] Runaway electron beam generation by a plasma cathode in atmospheric air discharge
    Mastyugin, D. S.
    Osipov, V. V.
    Solomonov, V. I.
    TECHNICAL PHYSICS LETTERS, 2009, 35 (06) : 487 - 490
  • [36] Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen
    V. F. Tarasenko
    E. Kh. Baksht
    A. G. Burachenko
    M. I. Lomaev
    D. A. Sorokin
    Yu. V. Shut’ko
    Technical Physics Letters, 2010, 36 : 375 - 378
  • [37] INTERACTION OF AN ELECTRON-BEAM WITH NONUNIFORM GAS-FLOW
    MALINOVSKY, VS
    VASENKOV, AV
    PHYSICAL REVIEW E, 1995, 52 (03) : R2175 - R2178
  • [38] Variation of the beam parameters of runaway electrons in a gas discharge under the conditions of nonuniform preliminary ionization
    A. V. Kozyrev
    E. M. Baranova
    V. Yu. Kozhevnikov
    N. S. Semenyuk
    Technical Physics Letters, 2017, 43 : 804 - 807
  • [39] Variation of the beam parameters of runaway electrons in a gas discharge under the conditions of nonuniform preliminary ionization
    Kozyrev, A. V.
    Baranova, E. M.
    Kozhevnikov, V. Yu.
    Semenyuk, N. S.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (09) : 804 - 807
  • [40] Runaway electron beam control
    Carnevale, D.
    Ariola, M.
    Artaserse, G.
    Bagnato, F.
    Bin, W.
    Boncagni, L.
    Bolzonella, T.
    Bombarda, F.
    Buratti, P.
    Calacci, L.
    Causa, F.
    Coda, S.
    Cordella, F.
    Decker, J.
    De Tommasi, G.
    Duval, B.
    Esposito, B.
    Ferro, G.
    Ficker, O.
    Gabellieri, L.
    Gabrielli, A.
    Galeani, S.
    Galperti, C.
    Garavaglia, S.
    Havranek, A.
    Gobbin, M.
    Gospodarczyk, M.
    Granucci, G.
    Joffrin, E.
    Lennholm, M.
    Lier, A.
    Macusova, E.
    Martinelli, F.
    Martin-Solis, J. R.
    Mlynar, J.
    Panaccione, L.
    Papp, G.
    Passeri, M.
    Pautasso, G.
    Popovic, Z.
    Possieri, C.
    Pucella, G.
    Sheikh, U. A.
    Ramogida, G.
    Reux, C.
    Rimini, F.
    Romano, A.
    Sassano, M.
    Tilia, B.
    Tudisco, O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)