Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

被引:43
|
作者
Hou, Jin [1 ,2 ]
Osterlund, Tobias [1 ]
Liu, Zihe [1 ]
Petranovic, Dina [1 ]
Nielsen, Jens [1 ,3 ]
机构
[1] Chalmers Univ Technol, Novo Nordisk Fdn Ctr Biosustainabil, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden
[2] Shandong Univ, State Key Lab Microbial Technol, Jinan 250100, Shandong, Peoples R China
[3] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark
基金
欧洲研究理事会;
关键词
Heterologous protein production; Heat shock response; HSF1; Chaperones; Saccharomyces cerevisiae; EXTERNAL INVERTASE; PICHIA-PASTORIS; EXPRESSION; OVEREXPRESSION; ALBUMIN;
D O I
10.1007/s00253-012-4596-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high level over-expression of HSF1-R206S increased heterologous alpha-amylase yield 25 and 70 % when glucose was fully consumed, and 37 and 62 % at the end of the ethanol phase, respectively. Moderate and high level over-expression also improved endogenous invertase yield 118 and 94 %, respectively. However, human insulin precursor was only improved slightly and this only by high level over-expression of HSF1-R206S, supporting our previous findings that the production of this protein in S. cerevisiae is not limited by secretion. Our results provide an effective strategy to improve protein secretion and demonstrated an approach that can induce ER and cytosolic chaperones simultaneously.
引用
收藏
页码:3559 / 3568
页数:10
相关论文
共 50 条
  • [41] A Yeast Modular Cloning (MoClo) Toolkit Expansion for Optimization of Heterologous Protein Secretion and Surface Display in Saccharomyces cerevisiae
    O'Riordan, Nicola M.
    Juric, Vanja
    O'Neill, Sarah K.
    Roche, Aoife P.
    Young, Paul W.
    ACS SYNTHETIC BIOLOGY, 2024, 13 (04): : 1246 - 1258
  • [42] Overexpression of native Saccharomyces cerevisiae SNARE genes increased heterologous cellulase secretion
    Van Zyl, John Henry D.
    Den Haan, Riaan
    Van Zyl, Willem H.
    YEAST, 2015, 32 : S202 - S202
  • [43] Molecular engineering of fusion proteins for secretion of heterologous proteins in the yeast saccharomyces cerevisiae
    Burbank, JA
    Wittrup, KD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U186 - U186
  • [44] Comparative genomics of the response to cold shock in Saccharomyces paradoxus and Saccharomyces cerevisiae
    Dahlquist, Kam
    Harmon, Nicolette
    Amakiri, Chidinma
    Sherbina, Katrina
    Rohacz, Nicholas
    Fitzpatrick, Ben
    FASEB JOURNAL, 2014, 28 (01):
  • [45] Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae
    Hou, Jin
    Tyo, Keith E. J.
    Liu, Zihe
    Petranovic, Dina
    Nielsen, Jens
    FEMS YEAST RESEARCH, 2012, 12 (05) : 491 - 510
  • [46] Protein folding and secretion in the yeast Saccharomyces cerevisiae.
    Wittrup, KD
    Parekh, RN
    Robinson, AS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 45 - BIOT
  • [47] The response of Saccharomyces cerevisiae to heat stress.
    Mensonides, FIC
    Schuurmans, JM
    de Mattos, MJT
    Hellingwerf, KJ
    Brul, S
    YEAST, 2003, 20 : S188 - S188
  • [48] Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae
    Machens, Fabian
    Balazadeh, Salma
    Mueller-Roeber, Bernd
    Messerschmidt, Katrin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2017, 5
  • [49] TARGETING OF A HETEROLOGOUS PROTEIN TO THE CELL-WALL OF SACCHAROMYCES-CEREVISIAE
    SCHREUDER, MP
    BREKELMANS, S
    VANDENENDE, H
    KLIS, FM
    YEAST, 1993, 9 (04) : 399 - 409
  • [50] Blocking Endocytotic Mechanisms to Improve Heterologous Protein Titers in Saccharomyces cerevisiae
    Rodriguez-Limas, William A.
    Tannenbaum, Victoria
    Tyo, Keith E. J.
    BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (02) : 376 - 385