Notions of Mobius inversion

被引:9
|
作者
Leinster, Tom [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Mobius inversion; Mobius-Rota inversion; Euler characteristic of category; enriched category; poset; incidence algebra; unique lifting of factorizations; matrix of category; pullback-homomorphism; EULER CHARACTERISTICS; CATEGORIES; ALGEBRA;
D O I
10.36045/bbms/1354031556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mobius inversion, originally a tool in number theory, was generalized to posets for use in group theory and combinatorics. It was later generalized to categories in two different ways, both of which are useful. We provide a unifying abstract framework. This allows us to compare and contrast the two theories of Mobius inversion for categories, and advance each of them. Among several side benefits is an improved understanding of the following fact: the Euler characteristic of the classifying space of a (suitably finite) category depends only on its underlying graph.
引用
收藏
页码:909 / 933
页数:25
相关论文
共 50 条
  • [21] Mobius inversion formula for the trace group
    Bouillard, A
    Mairesse, J
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (12) : 899 - 904
  • [22] NEW MOBIUS-INVERSION FORMULAS
    REN, SY
    [J]. PHYSICS LETTERS A, 1992, 164 (01) : 1 - 5
  • [23] SUPERSYMMETRY AND THE MOBIUS-INVERSION FUNCTION
    SPECTOR, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (02) : 239 - 252
  • [24] Mobius inversion formula for monoids with zero
    Poinsot, Laurent
    Duchamp, Gerard H. E.
    Tollu, Christophe
    [J]. SEMIGROUP FORUM, 2010, 81 (03) : 446 - 460
  • [25] Local representation theory and Mobius inversion
    Barker, L
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (07) : 3377 - 3399
  • [26] APPLICATIONS OF MOBIUS INVERSION IN COMBINATORIAL ANALYSIS
    BENDER, EA
    GOLDMAN, JR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (08): : 789 - 803
  • [27] Matrix-inversion method: Applications to Mobius inversion and deconvolution
    Xie, Q
    Chen, NX
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6055 - 6065
  • [28] Mobius inversion formulas for flows of arithmetic semigroups
    Benito, Manuel
    Navas, Luis M.
    Varona, Juan L.
    [J]. JOURNAL OF NUMBER THEORY, 2008, 128 (02) : 390 - 412
  • [29] BINOMIAL POSETS, MOBIUS INVERSION, AND PERMUTATION ENUMERATION
    STANLEY, RP
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1976, 20 (03) : 336 - 356
  • [30] APPLICATION OF MOBIUS INVERSION TO A PROBLEM IN TOPOLOGICAL DYNAMICS
    MARKLEY, NG
    ANDERSON, WN
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (05): : 1027 - 1029