Non-Enzymatic Amperometric Sensing of Hydrogen Peroxide Based on Vanadium Pentoxide Nanostructures

被引:95
|
作者
Ghanei-Motlagh, Masoud [1 ,2 ]
Taher, Mohammad Ali [1 ]
Fayazi, Maryam [3 ]
Baghayeri, Mehdi [4 ]
Hosseinifar, AbduRahman [5 ]
机构
[1] Shahid Bahonar Univ Kerman, Fac Sci, Dept Chem, Kerman, Iran
[2] Shahid Bahonar Univ Kerman, Young Researchers Soc, Kerman, Iran
[3] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Environm, Kerman, Iran
[4] Hakim Sabzevari Univ, Dept Chem, Sabzevar, Iran
[5] Univ Tehran, Coll Engn, Sch Chem Engn, TPNT, Tehran 111554563, Iran
关键词
ELECTROCHEMICAL DETECTION; CATHODE MATERIAL; OXIDE NANOPARTICLES; V2O5; SENSOR; PERFORMANCE; NANOCOMPOSITE; ELECTRODE; CARBON; H2O2;
D O I
10.1149/2.0521906jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, a simple and selective electrochemical sensor was proposed for non-enzymatic determination of hydrogen peroxide (H2O2). This sensor was fabricated by incorporation of the novel nanostructured orthorhombic vanadium pentoxide (V2O5) into the carbon paste electrode (CPE) which provides significant catalytic activities for H2O2 reduction. The electrochemical impedance spectroscopy (EIS) studies illustrated lower charge transfer resistance (R-ct) of the V2O5 modified CPE compared to the unmodified CPE. The effects of various experimental factors such as solution pH, applied potential and amount of modifier were studied in an amperometric mode. After optimization, the proposed method displayed a wide linear detection range from 5.0 to 1400.0 mu M with a low detection limit of 2.5 mu M based S/N = 3 and a response time less than 5 s. The sensitivity of 3.44 mu A mu M-1 cm(-2) was acquired in the present method for H2O2 quantification is considerably better than other reported amperometric sensors with similar detection limits. In addition, the designed sensor depicted good reproducibility, remarkable selectivity, and excellent stability. The modified CPE was applicable for analysis of H2O2 in some cosmetic and personal care products. (C) 2019 The Electrochemical Society.
引用
收藏
页码:B367 / B372
页数:6
相关论文
共 50 条
  • [31] Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures
    Unmuessig, Tobias
    Weltin, Andreas
    Urban, Sebastian
    Daubinger, Patrick
    Urban, Gerald A.
    Kieninger, Jochen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 816 : 215 - 222
  • [32] Evaluation of a new electrochemical sensor for selective detection of non-enzymatic hydrogen peroxide based on hierarchical nanostructures of zirconium molybdate
    Kumar, J. Vinoth
    Karthik, R.
    Chen, Shen-Ming
    Raja, N.
    Selvam, V.
    Muthuraj, V.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 500 : 44 - 53
  • [33] A Non-Enzymatic Electrochemical Sensing Platform Based on Hemin@MOF Composites for Detecting Hydrogen Peroxide and DNA
    Cheng, Dan
    Xiao, Xuelian
    Li, Xi
    Wang, Chen
    Liang, Yani
    Yu, Zhengsong
    Jin, Chenglong
    Zhou, Nan
    Chen, Ming
    Dong, Yulin
    Lin, Yawei
    Xie, Zhizhong
    Zhang, Chaocan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) : B885 - B892
  • [34] Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures
    Mollarasouli, Fariba
    Asadpour-Zeynali, Karim
    Campuzano, Susana
    Yanez-Sedeno, Paloma
    Pingarron, Jose M.
    ELECTROCHIMICA ACTA, 2017, 246 : 303 - 314
  • [35] A Non-enzymatic Hydrogen Peroxide Sensor with Enhanced Sensitivity Based on Pt Nanoparticles
    Awais, Azka
    Arsalan, Muhammad
    Sheng, Qinglin
    Yue, Tianli
    ANALYTICAL SCIENCES, 2021, 37 (10) : 1419 - 1426
  • [36] A Non-enzymatic Hydrogen Peroxide Sensor with Enhanced Sensitivity Based on Pt Nanoparticles
    Azka Awais
    Muhammad Arsalan
    Qinglin Sheng
    Tianli Yue
    Analytical Sciences, 2021, 37 : 1419 - 1426
  • [37] A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide
    Du, Xin
    Chen, Yuan
    Dong, Wenhao
    Han, Bingkai
    Liu, Min
    Chen, Qiang
    Zhou, Jun
    ONCOTARGET, 2017, 8 (08) : 13039 - 13047
  • [38] Aluminosilicate nanoparticles decorated by copper hexacyanoferrate as a good electrocatalyst for non-enzymatic hydrogen peroxide sensing
    Norouzi, Banafsheh
    Tilami, Salma Ehsani
    Ahghari, Mohammad Reza
    INORGANIC AND NANO-METAL CHEMISTRY, 2021,
  • [39] Facile one pot synthesis of sulphur doped graphene for non-enzymatic sensing of hydrogen peroxide
    Kanuganti, Saritha Rani
    Sultana, Rafiya
    Kolli, Deepti
    Maddula, Gnana Kiran
    Singampalli, Mutta Reddy
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2023, 103 (19) : 8051 - 8062
  • [40] Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide
    Ngamaroonchote, Aroonsri
    Sanguansap, Yanisa
    Wutikhun, Tuksadon
    Karn-orachai, Kullavadee
    MICROCHIMICA ACTA, 2020, 187 (10)