Heat Loss Estimation using UAS Thermal Imagery

被引:0
|
作者
Koiner, Katelyn [1 ]
Rosener, Andrew [1 ]
Sadhukhan, Debanjan [1 ]
Selvaraj, Daisy Flora [1 ]
El Mrabet, Zakaria [1 ]
Dunlevy, Matt [2 ]
Ranganathan, Prakash [1 ]
机构
[1] Univ North Dakota, Sch Elect Engn & Comp Sci, Grand Forks, ND 58202 USA
[2] SkySkopes, Grand Forks, ND USA
关键词
Infrared (IR) thermography; Overall heat transfer coefficient (U-value); Unmanned aerial vehicles (UAVs); INFRARED THERMOGRAPHY;
D O I
10.1109/eit.2019.8833924
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Heat Loss Quantification (111,()) is a key step in improving the thermal performance of buildings. Affordable infrared (IR) cameras mounted on an unmanned aerial vehicle (UAV) make low cost heat loss quantification using IR imaging feasible. This technique also facilitates capturing the heat loss information in hard-to-reach areas using UAVs. In this paper, a series of pre-processing steps such as dominant color isolation (DCI), background elimination and key point identification as part of the heat loss quantification arc discussed. The thermal transmittance (or the U-value) of various buildings at the University of North Dakota, in Grand Forks, ND, are estimated from the images captured by aerial thermal cameras mounted on UAVs.
引用
收藏
页码:242 / 248
页数:7
相关论文
共 50 条
  • [21] Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral Imagery
    Bevers, Noah
    Ohlson, Erik W.
    Kushal, K. C.
    Jones, Mark W.
    Khanal, Sami
    REMOTE SENSING, 2024, 16 (17)
  • [22] Estimation of the temperature, heat gain and heat loss by solar parabolic trough collector under Algerian climate using different thermal oils
    Ouagued, Malika
    Khellaf, Abdallah
    Loukarfi, Larbi
    ENERGY CONVERSION AND MANAGEMENT, 2013, 75 : 191 - 201
  • [23] Estimation of evapotranspiration on discontinuous crop canopies using high resolution thermal imagery
    Jimenez-Berni, Jose A.
    Zarco-Tejada, P. J.
    Fereres, E.
    Sepulcre-Canto, G.
    Testi, L.
    Iniesta, F.
    Villalobos, F. J.
    Orgaz, F.
    Goldhamer, D. A.
    Salinas, M.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3249 - +
  • [24] Cotton Growth Modelling Using UAS-Derived DSM and RGB Imagery
    Psiroukis, Vasilis
    Papadopoulos, George
    Kasimati, Aikaterini
    Tsoulias, Nikos
    Fountas, Spyros
    REMOTE SENSING, 2023, 15 (05)
  • [25] Automating Ground Control Point Detection in UAS Imagery Using Matrix Barcodes
    Ladino, Karla S.
    Sama, Michael P.
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING IX, 2024, 13053
  • [26] Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery
    Padro, Joan-Cristian
    Carabassa, Vicenc
    Balague, Jaume
    Brotons, Lluis
    Alcaniz, Josep M.
    Pons, Xavier
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 657 : 1602 - 1614
  • [27] Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study
    Allred, Barry
    Eash, Neal
    Freeland, Robert
    Martinez, Luis
    Wishart, DeBonne
    AGRICULTURAL WATER MANAGEMENT, 2018, 197 : 132 - 137
  • [28] Wheat Lodging Detection from UAS Imagery Using Machine Learning Algorithms
    Zhang, Zhao
    Flores, Paulo
    Igathinathane, C.
    Naik, Dayakar L.
    Kiran, Ravi
    Ransom, Joel K.
    REMOTE SENSING, 2020, 12 (11)
  • [29] ASPECTS OF DEM GENERATION FROM UAS IMAGERY
    Greiwe, A.
    Gehrke, R.
    Spreckels, V.
    Schlienkamp, A.
    UAV-G2013, 2013, : 163 - 167
  • [30] Improving the Estimation of Hydraulic and Thermal Properties of Heterogeneous Media via the Addition of Heat Loss
    Pan, Mengqi
    Huang, Quanzhong
    Feng, Rong
    Xu, Xu
    Xiong, Yunwu
    Huang, Guanhua
    VADOSE ZONE JOURNAL, 2019, 18 (01)