DETERMINATION OF THE FRACTIONAL ORDER IN SEMILINEAR SUBDIFFUSION EQUATIONS

被引:9
|
作者
Krasnoschok, Mykola [1 ]
Pereverzyev, Sergei [2 ]
Siryk, Sergii, V [3 ]
Vasylyeva, Nataliya [1 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, G Batyuka Str 19, UA-84100 Sloviansk, Ukraine
[2] Johann Radon Inst, A-040 Linz, Austria
[3] Natl Tech Univ Ukraine, Igor Sikorsky Kyiv Polytech Inst, Prospect Peremohy 37, UA-03056 Kiev, Ukraine
基金
欧盟地平线“2020”;
关键词
materials with memory; subdiffusion semilinear equations; Caputo derivative; inverse problem; regularization method; quasioptimality approach; INVERSE PROBLEMS; DIFFUSION; CALCULUS; TERM;
D O I
10.1515/fca-2020-0035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the inverse boundary value-problem to determine the fractional order. of nonautonomous semilinear subdiffusion equations with memory terms from observations of their solutions during small time. We obtain an explicit formula reconstructing the order. Based on the Tikhonov regularization scheme and the quasi-optimality criterion, we construct the computational algorithm to find the order. from noisy discrete measurements. We present several numerical tests illustrating the algorithm in action.
引用
收藏
页码:694 / 722
页数:29
相关论文
共 50 条
  • [1] Determination of the Fractional Order in Semilinear Subdiffusion Equations
    Mykola Krasnoschok
    Sergei Pereverzyev
    Sergii V. Siryk
    Nataliya Vasylyeva
    Fractional Calculus and Applied Analysis, 2020, 23 : 694 - 722
  • [2] DETERMINATION OF THE ORDER OF FRACTIONAL DERIVATIVE FOR SUBDIFFUSION EQUATIONS
    Ashurov, Ravshan
    Umarov, Sabir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1647 - 1662
  • [3] Determination of the Order of Fractional Derivative for Subdiffusion Equations
    Ravshan Ashurov
    Sabir Umarov
    Fractional Calculus and Applied Analysis, 2020, 23 : 1647 - 1662
  • [4] DETERMINATION OF FRACTIONAL ORDER AND SOURCE TERM IN SUBDIFFUSION EQUATIONS
    Ashurov, R. R.
    Fayziev, Yu E.
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (01): : 19 - 31
  • [5] Dissipativity of semilinear time fractional subdiffusion equations and numerical approximations
    Cheng, Bianru
    Guo, Zhenhua
    Wang, Dongling
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 276 - 283
  • [6] HIGH-ORDER TIME STEPPING SCHEMES FOR SEMILINEAR SUBDIFFUSION EQUATIONS
    Wang, Kai
    Zhou, Zhi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (06) : 3226 - 3250
  • [7] Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations
    Vicente Vergara
    Rico Zacher
    Journal of Evolution Equations, 2017, 17 : 599 - 626
  • [8] PSEUDO ASYMPTOTIC SOLUTIONS OF FRACTIONAL ORDER SEMILINEAR EQUATIONS
    Alvarez-Pardo, Edgardo
    Lizama, Carlos
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02): : 42 - 52
  • [9] An efficient nonpolynomial spline method for distributed order fractional subdiffusion equations
    Li, Xuhao
    Wong, Patricia J. Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 4906 - 4922
  • [10] On the nonlocal Cauchy problem for semilinear fractional order evolution equations
    Wang, JinRong
    Zhou, Yong
    Feckan, Michal
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (06): : 911 - 922