On the nonlocal Cauchy problem for semilinear fractional order evolution equations

被引:27
|
作者
Wang, JinRong [1 ,2 ]
Zhou, Yong [3 ]
Feckan, Michal [4 ,5 ]
机构
[1] Guizhou Normal Coll, Sch Math & Comp Sci, Guiyang 550018, Guizhou, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[3] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
[4] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[5] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
来源
基金
中国国家自然科学基金;
关键词
Fractional order evolution equations; Nonlocal Cauchy problem; Mild solution; Existence; DIFFERENTIAL-EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.2478/s11533-013-0381-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507-516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465-4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first result relies on a growth condition on the whole time interval via Schaefer fixed point theorem. The second result relies on a growth condition splitted into two parts, one for the subinterval containing the points associated with the nonlocal conditions, and the other for the rest of the interval via O'Regan fixed point theorem.
引用
收藏
页码:911 / 922
页数:12
相关论文
共 50 条
  • [1] Nonlocal Cauchy problem for abstract fractional semilinear evolution equations
    Balachandran, K.
    Park, J. Y.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) : 4471 - 4475
  • [2] Nonlocal Cauchy problem for fractional evolution equations
    Zhou, Yong
    Jiao, Feng
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4465 - 4475
  • [3] Nonlocal Cauchy Problem for Nonautonomous Fractional Evolution Equations
    Fei Xiao
    [J]. Advances in Difference Equations, 2011
  • [4] Nonlocal Cauchy Problem for Nonautonomous Fractional Evolution Equations
    Xiao, Fei
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [5] On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping
    Fujiwara, Kazumasa
    Ikeda, Masahiro
    Wakasugi, Yuta
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (06):
  • [6] On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping
    Kazumasa Fujiwara
    Masahiro Ikeda
    Yuta Wakasugi
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [7] Cauchy problem for evolution equations of a fractional order
    Kochubei, AN
    Éidelman, SD
    [J]. DOKLADY MATHEMATICS, 2004, 69 (01) : 38 - 40
  • [8] Semilinear integrodifferential equations with nonlocal cauchy problem
    Lin, YP
    Liu, JH
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (05) : 1023 - 1033
  • [9] Nonlocal Cauchy problems for semilinear evolution equations
    Boucherif, A
    Akca, H
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (03): : 415 - 420
  • [10] Nonlocal Cauchy problems for semilinear evolution equations
    Liang, J
    van Casteren, J
    Xiao, TJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (02) : 173 - 189