A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts

被引:170
|
作者
Hansson, A
Hance, N
Dufour, E
Rantanen, A
Hultenby, K
Clayton, DA
Wibom, R
Larsson, NG [1 ]
机构
[1] Karolinska Univ Hosp, Karolinska Inst, Dept Med Nutr & Biosci, Novum, S-14186 Huddinge, Sweden
[2] Karolinska Univ Hosp, Karolinska Inst, Dept Lab Med, Novum, S-14186 Huddinge, Sweden
[3] Karolinska Univ Hosp, Karolinska Inst, Clin Res Ctr, Novum, S-14186 Huddinge, Sweden
[4] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
关键词
D O I
10.1073/pnas.0308710100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We performed global gene expression analyses in mouse hearts with progressive respiratory chain deficiency and found a metabolic switch at an early disease stage. The tissue-specific mitochondrial transcription factor A (Tfam) knockout mice of this study displayed a progressive heart phenotype with depletion of mtDNA and an accompanying severe decline of respiratory chain enzyme activities along with a decreased mitochondrial ATP production rate. These characteristics were observed after 2 weeks of age and became gradually more severe until the terminal stage occurred at 10-12 weeks of age. Global gene expression analyses with microarrays showed that a metabolic switch occurred early in the progression of cardiac mitochondrial dysfunction. A large number of genes encoding critical enzymes in fatty acid oxidation showed decreased expression whereas several genes encoding glycolytic enzymes showed increased expression. These alterations are consistent with activation of a fetal gene expression program, a well-documented phenomenon in cardiac disease. An increase in mitochondrial mass was not observed until the disease had reached an advanced stage. In contrast to what we have earlier observed in respiratory chain-deficient skeletal muscle, the increased mitochondrial biogenesis in respiratory chain-deficient heart muscle did not increase the overall mitochondrial ATP production rate. The observed switch in metabolism is unlikely to benefit energy homeostasis in the respiratory chain-deficient hearts and therefore likely aggravates the disease. It can thus be concluded that at least some of the secondary gene expression alterations in mitochondrial cardiomyopathy do not compensate but rather directly contribute to heart failure progression.
引用
收藏
页码:3136 / 3141
页数:6
相关论文
共 50 条
  • [31] Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain
    Davide Doni
    Federica Cavion
    Marco Bortolus
    Elisa Baschiera
    Silvia Muccioli
    Giulia Tombesi
    Federica d’Ettorre
    Daniele Ottaviani
    Elena Marchesan
    Luigi Leanza
    Elisa Greggio
    Elena Ziviani
    Antonella Russo
    Milena Bellin
    Geppo Sartori
    Donatella Carbonera
    Leonardo Salviati
    Paola Costantini
    Cell Death & Disease, 14
  • [32] Impaired mitochondrial Ca2+ homeostasis in respiratory chain-deficient cells but efficient compensation of energetic disadvantage by enhanced anaerobic glycolysis due to low ATP steady state levels
    von Kleist-Retzow, Juergen-Christoph
    Hornig-Do, Hue-Tran
    Schauen, Matthias
    Eckertz, Sabrina
    Dinh, Tuan Anh Duong
    Stassen, Frank
    Lottmann, Nadine
    Bust, Maria
    Galunska, Bistra
    Wielckens, Klaus
    Hein, Wolfgang
    Beuth, Joseph
    Braun, Jan-Matthias
    Fischer, Juergen H.
    Ganitkevich, Vladimir Y.
    Maniura-Weber, Katharina
    Wiesner, Rudolf J.
    EXPERIMENTAL CELL RESEARCH, 2007, 313 (14) : 3076 - 3089
  • [33] MITOCHONDRIAL RESPIRATORY CHAIN AND CREATINE KINASE ACTIVITIES IN mdx MOUSE BRAIN
    Tuon, Lisiane
    Comim, Clarissa M.
    Fraga, Daine B.
    Scaini, Giselli
    Rezin, Gislaine T.
    Baptista, Bruna R.
    Streck, Emilio L.
    Vainzof, Mariz
    Quevedo, Joao
    MUSCLE & NERVE, 2010, 41 (02) : 257 - 260
  • [34] Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications
    Chen, Jin-Qiang
    Cammarata, Patrick P.
    Baines, Christopher P.
    Yager, James D.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2009, 1793 (10): : 1540 - 1570
  • [35] MITOCHONDRIAL BIOGENESIS AND DEVELOPMENT OF RESPIRATORY-CHAIN ENZYMES IN KIDNEY-CELLS - ROLE OF GLUCOCORTICOIDS
    DJOUADI, F
    BASTIN, J
    GILBERT, T
    ROTIG, A
    RUSTIN, P
    MERLETBENICHOU, C
    AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (01): : C245 - C254
  • [36] Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia (vol 10, pg 1343, 2017)
    Lin, Hong
    Magrane, Jordi
    Rattelle, Amy
    Stepanova, Anna
    Galkin, Alexander
    Clark, Elisia M.
    Dong, Yi Na
    Halawani, Sarah M.
    Lynch, David R.
    DISEASE MODELS & MECHANISMS, 2018, 11 (01)
  • [37] MITOCHONDRIAL BIOGENESIS, AND RESPIRATORY CHAIN ASSEMBLY AND FUNCTION, IN SKELETAL MUSCLE OF THE R6/2 MOUSE MODEL AND HUMAN HUNTINGTON'S DISEASE
    Hering, T.
    Kojer, K.
    Birth, N.
    Lenk, T.
    Parker, J. A.
    Haider, S.
    Tabrizi, S. J.
    Taanman, J.
    Orth, M.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2014, 85 : A32 - A32
  • [38] A high-fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues
    Chen, Dan
    Li, Xia
    Zhang, LiTing
    Zhu, Mei
    Gao, Ling
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (11) : 9602
  • [39] Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain
    Wiedemann, Nils
    Van der Laan, Martin
    Hutu, Dana P.
    Rehling, Peter
    Pfanner, Nikolaus
    JOURNAL OF CELL BIOLOGY, 2007, 179 (06): : 1115 - 1122
  • [40] STUDY ON MECHANISM OF ENERGY COUPLING IN REDOX CHAIN .2. ATP-SUPPORTED GENERATION OF MEMBRANE-POTENTIAL IN RESPIRATORY CHAIN-DEFICIENT SUBMITOCHONDRIAL PARTICLES
    JASAITIS, AA
    SEVERINA, II
    SKULACHE.VP
    SMIRNOVA, SM
    JOURNAL OF BIOENERGETICS, 1972, 3 (05): : 387 - &