Numerical study on plasmonic waveguiding effect of metallic nanorods structures

被引:4
|
作者
Gao, X. [1 ]
Ning, L. [2 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Manufacture Syst & Adv Manufactur, Inst Optomechatron, Guilin 541004, Guangxi, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guilin 541004, Guangxi, Peoples R China
来源
OPTIK | 2013年 / 124卷 / 09期
关键词
Surface plasmon polaritons; Nanorods structures; FDTD; Focusing; SURFACE-PLASMONS; GOLD NANORODS; FILMS;
D O I
10.1016/j.ijleo.2012.01.029
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to the coupling effect of SPPs excited by the incident electromagnetic field, the metallic nanorods structures show special optical properties that can be applied in many fields of nano-technology. The excitation efficiency spectrums of the two parallel nanorods and the pi-shaped nanorods structures are calculated by FDTD method, respectively, which show different SPR peak positions under the same conditions for these two structures. The high numerical aperture focusing processes through these two structures are simulated by 3D FDTD method. The results show that the pi-shaped nanorods perform better electromagnetic field far field transfer efficiency than the two parallel nanorods. Finally the focusing process through the angular pi-shaped nanorods structure is investigated, which indicates that the focal field can be transferred to different directions away from the optical axis of the focal beam. (C) 2012 Elsevier GmbH. All rights reserved.
引用
收藏
页码:828 / 831
页数:4
相关论文
共 50 条
  • [31] Numerical Modeling of Acousto-Plasmonic Coupling in Metallic Nanoparticles
    Saison-Francioso, Ophelie
    Leveque, Gaetan
    Akjouj, Abdellatif
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (22): : 12120 - 12133
  • [32] Tailoring the electron-phonon interaction with metallic plasmonic structures
    Wu, X.
    Kong, J.
    Protik, N. H.
    Broido, D.
    Kempa, K.
    MATERIALS TODAY PHYSICS, 2019, 8 : 86 - 91
  • [33] Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications
    Yang, Kang
    Yao, Xu
    Liu, Bowen
    Ren, Bin
    ADVANCED MATERIALS, 2021, 33 (50)
  • [34] Study of Nonlinear Plasmonic Scattering in Metallic Nanoparticles
    Chen, Yu-Ting
    Lee, Po-Hsuan
    Shen, Po-Ting
    Launer, Jann
    Oketani, Ryosuke
    Li, Kuan-Yu
    Huang, Yen-Ta
    Masui, Kyoko
    Shoji, Satoru
    Fujita, Katsumasa
    Chu, Shi-Wei
    ACS PHOTONICS, 2016, 3 (08): : 1432 - 1439
  • [35] A stretched coordinate technique for numerical absorption of evanescent and propagating waves in planar waveguiding structures
    Gribbons, MA
    Pinello, WP
    Cangellaris, AC
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1995, 43 (12) : 2883 - 2889
  • [36] Numerical Analysis of Discrete Geometric Method on Plasmonic Structures
    Yan, Shuai
    Xu, Xiaoyu
    Pflaum, Christoph
    Ren, Zhuoxiang
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [37] The study of surface plasmon enhanced emission of ZnO nanorods on plasmonic Ag nanorods array
    Pal, Anil Kumar
    Mohan, D. Bharathi
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 (09) : 4407 - 4412
  • [38] Experimental and numerical study of compression after impact of sandwich structures with metallic skins
    Aminanda, Y.
    Castanie, B.
    Barrau, J. -J.
    Thevenet, P.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (01) : 50 - 59
  • [39] Chiral plasmonic nano structures : experimental and numerical tools
    Gervinskas, Gediminas
    Rosa, Lorenzo
    Brasselet, Etienne
    Juodkazis, Saulius
    ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS VI, 2013, 8613
  • [40] Numerical study of metallic semiconductor nanolasers with double-concave cavity structures
    Zhang Bai-Fu
    Zhu Kang
    Wu Heng
    Hu Hai-Feng
    Shen Zhe
    Xu Ji
    ACTA PHYSICA SINICA, 2019, 68 (22)