Single chromatin fibre assembly using optical tweezers

被引:0
|
作者
Bennink, ML
Pope, LH
Leuba, SH
de Grooth, BG
Greve, J
机构
[1] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
[2] NCI, NIH, Lab Receptor Biol & Gene Express, Bethesda, MD 20892 USA
关键词
D O I
10.1002/1438-5171(200107)2:2<91::AID-SIMO91>3.0.CO;2-S
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here we observe the formation of a single chromatin fibre using optical tweezers. A single lambda-DNA molecule was suspended between two micron-sized beads, one held by a micropipette and the other in an optical trap. The constrained DNA molecule was incubated with Xenopus laevis egg extract in order to reconstitute a single chromatin fibre. An eight-fold compaction of the DNA molecule was observed in real-time. The compaction kinetics were found to be strongly dependent upon the tension applied to the DNA molecule. We incorporated the analysis of Brownian motion to accurately determine the tension throughout the compaction process. At forces exceeding 10 pN complete inhibition of compaction was observed for the time scale of the experiment. We have previously shown that stretching of a reconstituted chromatin fibre results in discrete and quantized structural opening events that we can attribute to the unravelling of single nucleosomes. Assembly kinetics therefore provide insight into rates of nucleosome formation and we demonstrate the possibility of probing these kinetics under different experimental conditions.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [31] Enantioselective manipulation of single chiral nanoparticles using optical tweezers
    Ali, Rfaqat
    Pinheiro, Felipe A.
    Dutra, Rafael S.
    Rosa, Felipe S.
    Maia Neto, Paulo A.
    NANOSCALE, 2020, 12 (08) : 5031 - 5037
  • [32] Rotation of single bacterial cells relative to the optical axis using optical tweezers
    Carmon, G.
    Feingold, M.
    OPTICS LETTERS, 2011, 36 (01) : 40 - 42
  • [33] Single cell analysis on a microchip platform using optical tweezers and optical scissors
    Munce, N
    Li, J
    Herman, P
    Lilge, L
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS, 2003, 4982 : 28 - 36
  • [34] Unraveling Chromatin Structure Using Magnetic Tweezers
    van Noort, John
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 207A - 207A
  • [35] Assembly of 3-dimensional structures using programmable holographic optical tweezers
    Sinclair, G
    Jordan, P
    Courtial, J
    Padgett, M
    Cooper, J
    Laczik, ZJ
    OPTICS EXPRESS, 2004, 12 (22): : 5475 - 5480
  • [36] Fabrication of a Material Assembly of Silver Nanoparticles Using the Phase Gradients of Optical Tweezers
    Yan, Zijie
    Sajjan, Manas
    Scherer, Norbert F.
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [37] Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers
    Zakrisson, Johan
    Singh, Bhupender
    Svenmarker, Pontus
    Wiklund, Krister
    Zhang, Hanging
    Hakobyan, Shoghik
    Ramstedt, Madeleine
    Andersson, Magnus
    LANGMUIR, 2016, 32 (18) : 4521 - 4529
  • [38] Lifetime of a single actomyosin rigor bond measured using optical tweezers
    Nishizaka, T
    Tadakuma, H
    Kato, H
    Miyata, H
    Kinosita, K
    Ishiwata, S
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1996, 65 : PF118 - PF118
  • [39] Single-molecule studies of dsDNA properties using optical tweezers
    Pobegalov, G.
    Arseniev, A.
    Sabantsev, A.
    Fedorova, Y.
    Sokolova, M.
    Melnikov, A.
    Petukhov, M.
    Kas, E.
    Khodorkovskiy, M.
    Grigoriev, M.
    FEBS JOURNAL, 2013, 280 : 61 - 61
  • [40] Interference and crosstalk in double optical tweezers using a single laser source
    Mangeol, Pierre
    Bockelmann, Ulrich
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (08):