A Discontinuous Parameter-Perturbation Method to Control Chaotic Systems

被引:0
|
作者
Jimenez-Triana, Alexander [1 ,2 ]
Chen, Guanrong [3 ]
Anzola, John [4 ]
机构
[1] Univ Distrital Francisco Jose de Caldas, Dept Control Engn, C11 74 68A-20, Bogota, Colombia
[2] Fdn Univ Libertadores, Carrera 16 63 A-68, Bogota, Colombia
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[4] Fdn Univ Libertadores, Dept Elect Engn, Carrera 16 63 A-68, Bogota, Colombia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new method is introduced for controlling chaos in continuous systems, and stabilizing one of the unstable periodic orbits embedded in the chaotic attractor. The stabilization of the orbit is obtained by applying a discontinuous perturbation to one parameter of the system in a neighborhood of the orbit. The analysis is carried out by means of Poincare surfaces, which makes possible to develop the method based on previous results applicable to discrete systems. The discrete nature of the method allows to stabilize three-dimensional systems applying only two changes to the parameter, although in principle more changes may be applied for each period of the orbit. The method is easily generalized to n-dimensional continuous systems of higher order.
引用
收藏
页码:2954 / 2958
页数:5
相关论文
共 50 条
  • [21] Nonlinear PI control of chaotic systems using singular perturbation theory
    Jiang, W
    Jing, W
    Li, HY
    CHAOS SOLITONS & FRACTALS, 2005, 25 (05) : 1057 - 1068
  • [22] Impulsive Control of a Class of Discrete Chaotic Systems with Parameter Uncertainties
    Zhang, Kexue
    Liu, Xinzhi
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3691 - 3695
  • [23] Control synchronization and parameter identification of two different chaotic systems
    Yu-Pin Luo
    Yao-Chen Hung
    Nonlinear Dynamics, 2013, 73 : 1507 - 1513
  • [24] Control synchronization and parameter identification of two different chaotic systems
    Luo, Yu-Pin
    Hung, Yao-Chen
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1507 - 1513
  • [25] An Improved Return Maps Method for Parameter Estimation of Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (04):
  • [26] Parameter Identification in Ecological Systems via Discontinuous and Singular Control Regimes
    McDonald, Dale B.
    Falade, Joseph O.
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 4, PTS A AND B, 2013, : 151 - 160
  • [27] Poincare Parameter Perturbation Method
    Zheng, Zhao-Chang
    DYNAMICS FOR SUSTAINABLE ENGINEERING, 2011, VOL 3, 2011, : 1114 - 1123
  • [28] Application of multistage homotopy-perturbation method in hybrid synchronization of chaotic systems
    Wang, Sha
    Yu, Yongguang
    Diao, Miao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (13) : 3007 - 3016
  • [29] Synchronization of chaotic systems with parameter uncertainties via variable structure control
    Etemadi, Shahrarn
    Alasty, Aria
    Salarieh, Hassan
    PHYSICS LETTERS A, 2006, 357 (01) : 17 - 21
  • [30] A fluid dynamical approach to the control, synchronization and parameter identification of chaotic systems
    Crispin, Y
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2245 - 2250