Note on Precise Rates in the Law of Iterated Logarithm for the Moment Convergence of IID: Random Variables under Sublinear Expectations

被引:0
|
作者
Xu, Mingzhou [1 ]
Cheng, Kun [1 ]
机构
[1] Jingdezhen Ceram Univ, Sch Informat Engn, Jingdezhen 333403, Peoples R China
基金
中国国家自然科学基金;
关键词
SUB-LINEAR EXPECTATIONS; INDEPENDENT RANDOM-VARIABLES; INEQUALITIES;
D O I
10.1155/2022/7566141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X,Xn,n & GE;1 be a sequence of independent, identically distributed random variables under sublinear expectations with CVX2 <& INFIN;, limc?& INFIN;EX2-c+=0, and EX=E-X=0. Write S0=0, Sn= n-ary sumation k=1nXn, and Mn=max0 & LE;k & LE;nSk, n & GE;1. For d > 0 and an=olog logn-d, we obtain the exact rates in the law of iterated logarithm of a kind of weighted infinite series of CVMn-epsilon+an sigma over bar nlog lognd+ as epsilon & DARR;0.
引用
收藏
页数:15
相关论文
共 50 条