Charge density increase in submonolayer organic field-effect transistors

被引:14
|
作者
Cramer, T. [1 ]
Kyndiah, A. [2 ,3 ]
Kloes, A. [4 ]
Murgia, M. [2 ]
Fraboni, B. [1 ]
Biscarini, F. [2 ,5 ]
机构
[1] Alma Mater Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy
[2] CNR, Ist Studio Mat Nanostrutturati, CNR ISMN, I-40129 Bologna, Italy
[3] Alma Mater Univ Bologna, Chem Dept G Ciamician, I-40126 Bologna, Italy
[4] Tech Hsch Mittelhessen, Competence Ctr Nanotechnol & Photon, D-35390 Giessen, Germany
[5] Univ Modena & Reggio Emilia, Dept Life Sci, I-41125 Modena, Italy
关键词
MOBILITY; DEVICE;
D O I
10.1103/PhysRevB.91.205305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interface confinement plays a central role in charge carrier accumulation and transport along the channel of organic field-effect transistors. Understanding the relevant interfacial interactions that affect the energy landscape experienced by carriers in the channel is of fundamental interest. Here we investigate charge transport in the submonolayer regime of pentacene transistors in which confinement arises due to the finite size of the interconnected semiconducting islands. In situ real-time electrical characterization is used to monitor the formation and evolution of the accumulation layer at the very early stages of growth. The morphology of the confining interfaces is controlled by growth conditions and pentacene coverage. Charge transport occurs when percolation pathways connecting source and drain electrodes are formed at a critical coverage. The displacement current across the oxide/semiconductor interface is observed starting from the onset of percolation (0.69 monolayer coverage). The analysis of the characteristics shows that already the submonolayer film fully screens the gate field and accumulates higher charge carrier density as compared to the monolayer film. We propose an electrostatic model to correlate the charge density to the characteristic length scale of the submonolayer film and the thickness of the dielectric layer. This explains charge mobility and threshold voltage of thin-film transistors in the submonolayer regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Charge transport in organic field-effect transistors
    Chen, Xu
    Guo, Jianhang
    Peng, Lichao
    Wang, Qijing
    Jiang, Sai
    Li, Yun
    MATERIALS TODAY ELECTRONICS, 2023, 6
  • [2] Charge transport in polycrystalline organic field-effect transistors
    Horowitz, G
    POLYCRYSTALLINE SEMICONDUCTORS IV MATERIALS, TECHNOLOGIES AND LARGE AREA ELECTRONICS, 2001, 80-81 : 3 - 13
  • [3] Charge injection in organic field-effect transistors.
    Hamadani, BH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1147 - U1147
  • [4] Charge transport in disordered organic field-effect transistors
    Tanase, C
    Blom, PWM
    Meijer, EJ
    de Leeuw, DM
    ORGANIC AND POLYMERIC MATERIALS AND DEVICES-OPTICAL, ELECTRICAL AND OPTOELECTRONIC PROPERTIES, 2002, 725 : 125 - 129
  • [5] Ambipolar charge transport in organic field-effect transistors
    Smits, Edsger C. P.
    Anthopoulos, Thomas D.
    Setayesh, Sepas
    van Veenendaal, Erik
    Coehoorn, Reinder
    Blom, Paul W. M.
    de Boer, Bert
    de Leeuw, Dago M.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [6] Charge injection process in organic field-effect transistors
    Minari, Takeo
    Miyadera, Tetsuhiko
    Tsukagoshi, Kazuhito
    Aoyagi, Yoshinobu
    Ito, Hiromi
    APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [7] Nonlinear charge injection in organic field-effect transistors
    Hamadani, BH
    Natelson, D
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
  • [8] Dimensionality of charge transport in organic field-effect transistors
    Sharma, A.
    van Oost, F. W. A.
    Kemerink, M.
    Bobbert, P. A.
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [9] Electric Field Confinement Effect on Charge Transport in Organic Field-Effect Transistors
    Li, Xiaoran
    Kadashchuk, Andrey
    Fishchuk, Ivan I.
    Smaal, Wiljan T. T.
    Gelinck, Gerwin
    Broer, Dirk J.
    Genoe, Jan
    Heremans, Paul
    Baessler, Heinz
    PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [10] Space charge layers in organic field-effect transistors with Gaussian or exponential semiconductor density of states
    Paasch, G.
    Scheinert, S.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)