Document image retrieval through word shape coding

被引:48
|
作者
Lu, Shijian [1 ]
Li, Linlin [2 ]
Tan, Chew Lim [2 ]
机构
[1] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore 119613, Singapore
[2] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore 117543, Singapore
关键词
document image retrieval; document image analysis; word shape coding;
D O I
10.1109/TPAMI.2008.89
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a document retrieval technique that is capable of searching document images without optical character recognition (OCR). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.
引用
收藏
页码:1913 / 1918
页数:6
相关论文
共 50 条
  • [31] Click-through-based Word Embedding for Large Scale Image Retrieval
    Chen, Yun
    Li, Victor O. K.
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 145 - 148
  • [32] Bringing Semantics in Word Image Retrieval
    Krishnan, Praveen
    Jawahar, C. V.
    2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 733 - 737
  • [33] Sparse Document Image Coding for Restoration
    Kumar, Vijay
    Bansal, Amit
    Tulsiyan, Goutam Hari
    Mishra, Anand
    Namboodiri, Anoop
    Jawahar, C. V.
    2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 713 - 717
  • [34] Residual coding in document image compression
    Kia, OE
    Doermann, DS
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (06) : 961 - 969
  • [35] An analysis of the effects of unknown word in the spoken document retrieval
    Ohira, S
    Shirai, K
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 4017 - 4017
  • [36] Document image retrieval in a question answering system for document images
    Kise, K
    Fukushima, S
    Matsumoto, K
    DOCUMENT ANALYSIS SYSTEMS VI, PROCEEDINGS, 2004, 3163 : 521 - 532
  • [37] Joint Image and Word Sense Discrimination for Image Retrieval
    Lucchi, Aurelien
    Weston, Jason
    COMPUTER VISION - ECCV 2012, PT I, 2012, 7572 : 130 - 143
  • [38] Integrating text retrieval and image retrieval in XML document searching
    Tjondronegoro, D.
    Zhang, J.
    Gu, J.
    Nguyen, A.
    Geva, S.
    ADVANCES IN XML INFORMATION RETRIEVAL AND EVALUATION, 2006, 3977 : 511 - 524
  • [39] Subband coding of binary textual images for document retrieval
    Gerek, ON
    Cetin, AE
    Tewfik, AH
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL II, 1996, : 899 - 902
  • [40] CODING IMAGE SEQUENCES FOR INTERACTIVE RETRIEVAL
    LIPPMAN, A
    BUTERA, W
    COMMUNICATIONS OF THE ACM, 1989, 32 (07) : 852 - 860